Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 15(11): 941-947, 2020 11.
Article in English | MEDLINE | ID: mdl-32778805

ABSTRACT

Nanoscale lithography and information storage in biocompatible materials offer possibilities for applications such as bioelectronics and degradable electronics for which traditional semiconductor fabrication techniques cannot be used. Silk fibroin, a natural protein renowned for its strength and biocompatibility, has been widely studied in this context. Here, we present the use of silk film as a biofunctional medium for nanolithography and data storage. Using tip-enhanced near-field infrared nanolithography, we demonstrate versatile manipulation and characterize the topography and conformation of the silk in situ. In particular, we fabricate greyscale and dual-tone nanopatterns with full-width at half-maximum resolutions of ~35 nm, creating an erasable 'silk drive' that digital data can be written to or read from. As an optical storage medium, the silk drive can store digital and biological information with a capacity of ~64 GB inch-2 and exhibits long-term stability under various harsh conditions. As a proof-of-principle demonstration, we show that this silk drive can be biofunctionalized to exhibit chromogenic reactions, resistance to bacterial infection and heat-triggered, enzyme-assisted decomposition.


Subject(s)
Fibroins/ultrastructure , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Optical Devices , Animals , Biocompatible Materials/chemistry , Bombyx/chemistry , Equipment Design , Fibroins/chemistry , Information Storage and Retrieval/methods , Nanostructures/chemistry , Nanotechnology/methods
2.
Adv Sci (Weinh) ; 4(9): 1700191, 2017 09.
Article in English | MEDLINE | ID: mdl-28932678

ABSTRACT

Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein-based microstructures using UV-photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein-based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer-scale high resolution patterning of bio-microstructures using well-defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein-based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures.

3.
Nat Commun ; 7: 13079, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27713412

ABSTRACT

Silk protein fibres produced by silkworms and spiders are renowned for their unparalleled mechanical strength and extensibility arising from their high-ß-sheet crystal contents as natural materials. Investigation of ß-sheet-oriented conformational transitions in silk proteins at the nanoscale remains a challenge using conventional imaging techniques given their limitations in chemical sensitivity or limited spatial resolution. Here, we report on electron-regulated nanoscale polymorphic transitions in silk proteins revealed by near-field infrared imaging and nano-spectroscopy at resolutions approaching the molecular level. The ability to locally probe nanoscale protein structural transitions combined with nanometre-precision electron-beam lithography offers us the capability to finely control the structure of silk proteins in two and three dimensions. Our work paves the way for unlocking essential nanoscopic protein structures and critical conditions for electron-induced conformational transitions, offering new rules to design protein-based nanoarchitectures.


Subject(s)
Fibroins/chemistry , Fibroins/ultrastructure , Silk/chemistry , Silk/ultrastructure , Animals , Bombyx/metabolism , Imaging, Three-Dimensional/methods , Molecular Conformation , Spectroscopy, Fourier Transform Infrared/methods , Spiders/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...