Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Orthod Dentofacial Orthop ; 159(5): 582-593, 2021 May.
Article in English | MEDLINE | ID: mdl-33771430

ABSTRACT

INTRODUCTION: Orthodontic tooth movement (OTM) relies on efficient remodeling of alveolar bone. While a well-controlled inflammatory response is essential during OTM, the mechanism regulating inflammation is unknown. Autophagy, a conserved catabolic pathway, has been shown to protect cells from excess inflammation in disease states. We hypothesize that autophagy plays a role in regulating inflammation during OTM. METHODS: A split-mouth design was used to force load molars in adult male mice, carrying a GFP-LC3 transgene for in vivo detection of autophagy. Confocal microscopy, Western blot, and quantitative polymerase chain reaction analyses were used to evaluate autophagy activation in tissues of loaded and control molars at time points after force application. Rapamycin, a Food and Drug Administration-approved immunosuppressant, was injected to evaluate induction of autophagy. RESULTS: Autophagy activity increases shortly after loading, primarily on the compression side of the tooth, and is closely associated with inflammatory cytokine expression and osteoclast recruitment. Daily administration of rapamycin, an autophagy activator, led to reduced tooth movement and osteoclast recruitment, suggesting that autophagy downregulates the inflammatory response and bone turnover during OTM. CONCLUSIONS: This is the first demonstration that shows that autophagy is induced by orthodontic loading and plays a role during OTM, likely via negative regulation of inflammatory response and bone turnover. Exploring roles of autophagy in OTM holds great promise, as aberrant autophagy is associated with periodontal disease and its related systemic inflammatory disorders.


Subject(s)
Osteoclasts , Tooth Movement Techniques , Animals , Autophagy , Bone Remodeling , Male , Mice , Molar
2.
Orthod Craniofac Res ; 24 Suppl 2: 108-116, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33711187

ABSTRACT

OBJECTIVE: This study aimed to quantify the 3D asymmetry of the maxilla in patients with unilateral cleft lip and palate (UCP) and investigate the defect factors responsible for the variability of the maxilla on the cleft side using a deep-learning-based CBCT image segmentation protocol. SETTING AND SAMPLE POPULATION: Cone beam computed tomography (CBCT) images of 60 patients with UCP were acquired. The samples in this study consisted of 39 males and 21 females, with a mean age of 11.52 years (SD = 3.27 years; range of 8-18 years). MATERIALS AND METHODS: The deep-learning-based protocol was used to segment the maxilla and defect initially, followed by manual refinement. Paired t-tests were performed to characterize the maxillary asymmetry. A multiple linear regression was carried out to investigate the relationship between the defect parameters and those of the cleft side of the maxilla. RESULTS: The cleft side of the maxilla demonstrated a significant decrease in maxillary volume and length as well as alveolar length, anterior width, posterior width, anterior height and posterior height. A significant increase in maxillary anterior width was demonstrated on the cleft side of the maxilla. There was a close relationship between the defect parameters and those of the cleft side of the maxilla. CONCLUSIONS: Based on the 3D volumetric segmentations, significant hypoplasia of the maxilla on the cleft side existed in the pyriform aperture and alveolar crest area near the defect. The defect structures appeared to contribute to the variability of the maxilla on the cleft side.


Subject(s)
Cleft Lip , Cleft Palate , Deep Learning , Spiral Cone-Beam Computed Tomography , Adolescent , Child , Cleft Lip/diagnostic imaging , Cleft Palate/diagnostic imaging , Cone-Beam Computed Tomography , Female , Humans , Male , Maxilla/diagnostic imaging
3.
Angle Orthod ; 90(1): 77-84, 2020 01.
Article in English | MEDLINE | ID: mdl-31403836

ABSTRACT

OBJECTIVES: To (1) introduce a novel machine learning method and (2) assess maxillary structure variation in unilateral canine impaction for advancing clinically viable information. MATERIALS AND METHODS: A machine learning algorithm utilizing Learning-based multi-source IntegratioN frameworK for Segmentation (LINKS) was used with cone-beam computed tomography (CBCT) images to quantify volumetric skeletal maxilla discrepancies of 30 study group (SG) patients with unilaterally impacted maxillary canines and 30 healthy control group (CG) subjects. Fully automatic segmentation was implemented for maxilla isolation, and maxillary volumetric and linear measurements were performed. Analysis of variance was used for statistical evaluation. RESULTS: Maxillary structure was successfully auto-segmented, with an average dice ratio of 0.80 for three-dimensional image segmentations and a minimal mean difference of two voxels on the midsagittal plane for digitized landmarks between the manually identified and the machine learning-based (LINKS) methods. No significant difference in bone volume was found between impaction ([2.37 ± 0.34] [Formula: see text] 104 mm3) and nonimpaction ([2.36 ± 0.35] [Formula: see text] 104 mm3) sides of SG. The SG maxillae had significantly smaller volumes, widths, heights, and depths (P < .05) than CG. CONCLUSIONS: The data suggest that palatal expansion could be beneficial for those with unilateral canine impaction, as underdevelopment of the maxilla often accompanies that condition in the early teen years. Fast and efficient CBCT image segmentation will allow large clinical data sets to be analyzed effectively.


Subject(s)
Machine Learning , Orthodontics , Palatal Expansion Technique , Spiral Cone-Beam Computed Tomography , Tooth, Impacted , Adolescent , Cone-Beam Computed Tomography , Constriction , Cuspid , Humans , Incisor , Maxilla
4.
Orthod Craniofac Res ; 22 Suppl 1: 127-133, 2019 May.
Article in English | MEDLINE | ID: mdl-31074145

ABSTRACT

OBJECTIVE: The pore size of the scaffold is a critical factor in repairing large bone defect. Here, we investigated the potential of bone regeneration using novel nanocomposite polydopamine-laced hydroxyapatite collagen calcium silicate (HCCS-PDA) scaffolds with two different pore sizes, 250 and 500 µm. SAMPLES/SETTING: A total of 12 male Sprague-Dawley rats were implanted with HCCS-PDA scaffold with pore size of either 250 or 500 µm into surgically created critical-sized defect (CSD). METHODS: HCCS-PDA scaffolds were fabricated using mould printing technique. The effect of pore size on mechanical strength of the scaffolds was assessed by compression testing. After seeding with rat mesenchymal stem cells (rMSCs), the scaffolds were implanted, and new bone formation was evaluated using microCT and histomorphometric analysis after 8 weeks. RESULTS: MicroCT and histology analysis demonstrated restricted peripheral new bone formation in either dural or periosteal side and limited new bone formation in the 250 µm pore scaffold. Conversely, the 500-µm pore scaffold showed more penetration of new bone into the scaffold and greater bone regeneration in the rat CSD. CONCLUSION: Based on our results, which demonstrated improved new bone formation in 500 µm pores scaffold, we can conclude that effective scaffold pore size that induces osteointegration and bone regeneration is around 500 µm for HCCS-PDA nanocomposite scaffold.


Subject(s)
Calcium , Durapatite , Animals , Bone Regeneration , Calcium Compounds , Collagen , Indoles , Male , Polymers , Porosity , Printing, Three-Dimensional , Rats , Rats, Sprague-Dawley , Silicates , Tissue Engineering , Tissue Scaffolds
5.
ACS Omega ; 3(3): 3592-3598, 2018 Mar 31.
Article in English | MEDLINE | ID: mdl-29623305

ABSTRACT

Bone tissue engineering (BTE) requires a sturdy biomaterial for scaffolds for restoration of large bone defects. Ideally, the scaffold should have a mechanical strength comparable to the natural bone in the implanted site. We show that adding cosolvent during the processing of our previously developed composite of hydroxyapatite-gelatin with a silane cross-linker can significantly affect its mechanical strength. When processed with tetrahydrofuran (THF) as the cosolvent, the new hydroxyapatite-gelatin composite can demonstrate almost twice the compressive strength (97 vs 195 MPa) and biaxial flexural strength (222 vs 431 MPa) of the previously developed hydroxyapatite-gelatin composite (i.e., processed without THF), respectively. We further confirm that this mechanical strength improvement is due to the improved morphology of both the enTMOS network and the composite. Furthermore, the addition of cosolvents does not appear to negatively impact the cell viability. Finally, the porous scaffold can be easily fabricated, and its compressive strength is around 11 MPa under dry conditions. All these results indicate that this new hydroxyapatite-gelatin composite is a promising material for BTE application.

6.
Sci Rep ; 7(1): 12984, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021583

ABSTRACT

A hydroxyapatite-collagen (HC) composite material can mimic composition and ultra-structures of natural bone and provide adequate bioactive material-tissue interactions. Incorporation of dopamine (DA) is one of keys in increasing the mechanical strength of the HC material to approaching that of cortical bone. In this study, the in vitro osteogenic effects of polydopamine-laced hydroxyapatite collagen calcium silicate (HCCS-PDA) were examined by culturing rat mesenchymal stem cells (rMSCs) on HCCS-PDA and HCCS coated plates. HCCS-PDA group demonstrated less cytotoxic from Live/Dead cytotoxic assay and displayed higher cell attachment, proliferation and mineralization than the HCCS group in vitro. For in vivo bone regeneration, HCCS-PDA or HCCS particulates with or without rMSC aggregates were implanted into rat critical-sized calvarial defects (CSD). After 12 weeks, calvarial bone regeneration was evaluated radiographically, histologically, and histomorphometrically. While the majority of new bone formation occurred around the HCCS-PDA particulates with rMSC aggregates, The HCCS-PDA particulates without rMSC aggregates showed limited osteoconductivity. HCCS with or without rMSC aggregates resulted in less bone formation, indicating a prominent role of DA in effective bone regeneration. Therefore, the HCCS-PDA biomaterial with the aid of rMSCs can be used to develop therapeutic strategies in bone tissue engineering with numerable clinical applications.


Subject(s)
Biomimetic Materials/pharmacology , Bone Marrow Cells/cytology , Indoles/pharmacology , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Polymers/pharmacology , Animals , Bone Marrow Cells/drug effects , Calcification, Physiologic/drug effects , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Collagen/pharmacology , Compressive Strength , Durapatite/pharmacology , Fluorescence , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Rats, Sprague-Dawley , Skull/drug effects , Skull/pathology , Surface Properties , X-Ray Microtomography
7.
Angle Orthod ; 87(2): 183-192, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27542105

ABSTRACT

OBJECTIVE: To quantify the biomechanical properties of the bovine periodontal ligament (PDL) in postmortem sections and to apply these properties to study orthodontic tooth intrusion using finite element analysis (FEA). We hypothesized that PDL's property inherited heterogeneous (anatomical dependency) and nonlinear stress-strain behavior that could aid FEA to delineate force vectors with various rectangular archwires. MATERIALS AND METHODS: A dynamic mechanical analyzer was used to quantify the stress-strain behavior of bovine PDL. Uniaxial tension tests using three force levels (0.5, 1, and 3 N) and samples from two anatomical locations (circumferential and longitudinal) were performed to calculate modulus. The Mooney-Rivlin hyperelastic (MRH) model was applied to the experimental data and used in an FEA of orthodontic intrusion rebounded via a 0.45-mm step bend with three archwire configurations of two materials (stainless steel and TMA). RESULTS: Force levels and anatomical location were statistically significant in their effects on modulus (P < .05). The apical part had a greater stiffness than did the middle part. The MRH model was found to approximate the experimental data well (r = 0.99), and it demonstrated a reasonable stress-strain outcome within the PDL and bone for FEA intrusion simulation. The force acting on the tooth increased five times from the 0.016 × 0.022-inch TMA to the 0.019 × 0.025-inch stainless steel. CONCLUSIONS: The PDL is a nonhomogeneous tissue in which the modulus changed in relation to location. PDL nonlinear constitutive model estimated quantitative force vectors for the first time to compare intrusive tooth movement in 3-D space in response to various rectangular archwires.


Subject(s)
Periodontal Ligament/physiology , Tooth Movement Techniques , Animals , Biomechanical Phenomena , Cattle , Elastic Modulus , Finite Element Analysis , In Vitro Techniques , Incisor , Mandible , Stress, Mechanical
8.
J Tissue Eng ; 7: 2041731416680306, 2016.
Article in English | MEDLINE | ID: mdl-28228929

ABSTRACT

Decellularization is a promising new method to prepare natural matrices for tissue regeneration. Successful decellularization has been reported using various tissues including skin, tendon, and cartilage, though studies using hard tissue such as bone are lacking. In this study, we aimed to define the optimal experimental parameters to decellularize natural bone matrix using 0.5% sodium dodecyl sulfate and 0.1% NH4OH. Then, the effects of decellularized bone matrix on rat mesenchymal stem cell proliferation, osteogenic gene expression, and osteogenic differentiations in a two-dimensional culture system were investigated. Decellularized bone was also evaluated with regard to cytotoxicity, biochemical, and mechanical characteristics in vitro. Evidence of complete decellularization was shown through hematoxylin and eosin staining and DNA measurements. Decellularized bone matrix displayed a cytocompatible property, conserved structure, mechanical strength, and mineral content comparable to natural bone. To study new bone formation, implantation of decellularized bone matrix particles seeded with rat mesenchymal stem cells was conducted using an orthotopic in vivo model. After 3 months post-implantation into a critical-sized defect in rat calvaria, new bone was formed around decellularized bone matrix particles and also merged with new bone between decellularized bone matrix particles. New bone formation was analyzed with micro computed tomography, mineral apposition rate, and histomorphometry. Decellularized bone matrix stimulated mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo, achieving effective bone regeneration and thereby serving as a promising biological bone graft.

SELECTION OF CITATIONS
SEARCH DETAIL
...