Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2372, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501325

ABSTRACT

Spatiotemporal control of chemical cascade reactions within compartmentalized domains is one of the difficult challenges to achieve. To implement such control, scientists have been working on the development of various artificial compartmentalized systems such as liposomes, vesicles, polymersomes, etc. Although a considerable amount of progress has been made in this direction, one still needs to develop alternative strategies for controlling cascade reaction networks within spatiotemporally controlled domains in a solution, which remains a non-trivial issue. Herein, we present the utilization of audible sound induced liquid vibrations for the generation of transient domains in an aqueous medium, which can be used for the control of cascade chemical reactions in a spatiotemporal fashion. This approach gives us access to highly reproducible spatiotemporal chemical gradients and patterns, in situ growth and aggregation of gold nanoparticles at predetermined locations or domains formed in a solution. Our strategy also gives us access to nanoparticle patterned hydrogels and their applications for region specific cell growth.


Subject(s)
Gold , Metal Nanoparticles , Liposomes , Sound , Vibration
2.
Angew Chem Int Ed Engl ; 59(9): 3460-3464, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31863556

ABSTRACT

Hierarchical self-assembly of building blocks over multiple length scales is ubiquitous in living organisms. Microtubules are one of the principal cellular components formed by hierarchical self-assembly of nanometer-sized tubulin heterodimers into protofilaments, which then associate to form micron-length-scale, multi-stranded tubes. This peculiar biological process is now mimicked with a fully synthetic molecule, which forms a 1:1 host-guest complex with cucurbit[7]uril as a globular building block, and then polymerizes into linear poly-pseudorotaxanes that associate laterally with each other in a self-shape-complementary manner to form a tubular structure with a length over tens of micrometers. Molecular dynamic simulations suggest that the tubular assembly consists of eight poly-pseudorotaxanes that wind together to form a 4.5 nm wide multi-stranded tubule.


Subject(s)
Microtubules/chemistry , Polymers/chemistry , Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Microtubules/metabolism , Molecular Dynamics Simulation , Rotaxanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...