Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 33(5): e4282, 2020 05.
Article in English | MEDLINE | ID: mdl-32124504

ABSTRACT

The aim of this study was to evaluate the imaging quality and diagnostic performance of fast spin echo diffusion-weighted imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (FSE-PROP-DWI) in distinguishing parotid pleomorphic adenoma (PMA) from Warthin tumor (WT). This retrospective study enrolled 44 parotid gland tumors from 34 patients, including 15 PMAs and 29 WTs with waived written informed consent. All participants underwent 1.5 T diffusion-weighted imaging including FSE-PROP-DWI and single-shot echo-planar diffusion-weighted imaging (SS-EP-DWI). After imaging resizing and registration among T2WI, FSE-PROP-DWI and SS-EP-DWI, imaging distortion was quantitatively analyzed by using the Dice coefficient. Signal-to-noise ratio and contrast-to-noise ratio were qualitatively evaluated. The mean apparent diffusion coefficient (ADC) of parotid gland tumors was calculated. Wilcoxon signed-rank test was used for paired comparison between FSE-PROP-DWI versus SS-EP-DWI. Mann-Whitney U test was used for independent group comparison between PMAs versus WTs. Diagnostic performance was evaluated by receiver operating characteristics curve analysis. P < 0.05 was considered statistically significant. The Dice coefficient was statistically significantly higher on FSE-PROP-DWI than SS-EP-DWI for both tumors (P < 0.005). Mean ADC was statistically significantly higher in PMAs than WTs on both FSE-PROP-DWI and SS-EP-DWI (P < 0.005). FSE-PROP-DWI and SS-EP-DWI successfully distinguished PMAs from WTs with an AUC of 0.880 and 0.945, respectively (P < 0.05). Sensitivity, specificity, positive predictive value, negative predictive value and accuracy in diagnosing PMAs were 100%, 69.0%, 62.5%, 100% and 79.5% for FSE-PROP-DWI, and 100%, 82.8%, 75%, 100% and 88.6% for SS-EP-DWI, respectively. FSE-PROP-DWI is useful to distinguish parotid PMAs from WTs with less distortion of tumors but lower AUC than SS-EP-DWI.


Subject(s)
Adenolymphoma/diagnostic imaging , Adenolymphoma/diagnosis , Adenoma, Pleomorphic/diagnostic imaging , Adenoma, Pleomorphic/diagnosis , Diffusion Magnetic Resonance Imaging , Parotid Neoplasms/diagnostic imaging , Parotid Neoplasms/diagnosis , Salivary Gland Neoplasms/diagnostic imaging , Salivary Gland Neoplasms/diagnosis , Diagnosis, Differential , Humans , Image Processing, Computer-Assisted , ROC Curve , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
2.
NMR Biomed ; 31(3)2018 03.
Article in English | MEDLINE | ID: mdl-29315960

ABSTRACT

The aim of this study was to investigate proton changes of the parotid gland after gustatory stimulation by semi-quantitative parameters and an empirical mathematical model (EMM) using high-temporal-resolution, double-echo, echo-planar imaging (EPI). Approved by a local institutional review board, this study examined 20 parotid glands from 10 healthy volunteers (male:female = 6: 4; age ± standard deviation =35.1 ± 14.1 years) with written informed consent obtained. All participants underwent 1.5-T, double-echo EPI with gustatory stimulation. Semi-quantitative parameters, including maximal drop ratio (MDR), time to peak (TTP), drop slope (DS), recovery slope (RS) and recovery ratio (RR), were calculated. The effect of temporal resolution on parotid functional parameters was evaluated. An EMM comprising an output function ( Sot=Aoe-kot+B) and an input function ( Sint=Ain1-e-kint) was also applied to fit all dynamic curves. Kruskal-Wallis test, Wilcoxon test, linear regression analysis and goodness of fit were used for statistical analysis. p < 0.05 was considered to be statistically significant. The signal intensity dropped significantly after gustatory stimulation on the proton density (PD) image (p < 0.01). MDR was 8.26% in the PD image. MDR and RR were negatively associated with time interval, whereas DS and TTP were significantly positively associated with time interval (all p < 0.05). EMM parametric values derived from PD-time curves of parotid glands were 12.04 ± 6.81%, 6.43 ± 4.23 min-1 , 88.73 ± 6.18%, 8.41 ± 4.86 min-1 and 1.09 ± 1.35 for Ao , ko , B, Ain and kin , respectively. Semi-quantitative functional parameters and EMM parameters using high-temporal-resolution, double-echo EPI allow the quantification of parotid proton changes after gustatory stimulation.


Subject(s)
Magnetic Resonance Imaging , Parotid Gland/metabolism , Protons , Taste , Adult , Computer Simulation , Female , Humans , Male , Time Factors
3.
PLoS One ; 10(4): e0124118, 2015.
Article in English | MEDLINE | ID: mdl-25922948

ABSTRACT

OBJECTIVES: To investigate transient signal loss on diffusion weighted images (DWI) and overestimation of apparent diffusion coefficient (ADC) in parotid glands using single shot echoplanar DWI (EPDWI). MATERIALS AND METHODS: This study enrolled 6 healthy subjects and 7 patients receiving radiotherapy. All participants received dynamic EPDWI with a total of 8 repetitions. Imaging quality of DWI was evaluated. Probability of severe overestimation of ADC (soADC), defined by an ADC ratio more than 1.2, was calculated. Error on T2WI, DWI, and ADC was computed. Statistical analysis included paired Student t testing and Mann-Whitney U test. A P value less than 0.05 was considered statistically significant. RESULTS: Transient signal loss was visually detected on some excitations of DWI but not on T2WI or mean DWI. soADC occurred randomly among 8 excitations and 3 directions of diffusion encoding gradients. Probability of soADC was significantly higher in radiotherapy group (42.86%) than in healthy group (24.39%). The mean error percentage decreased as the number of excitations increased on all images, and, it was smallest on T2WI, followed by DWI and ADC in an increasing order. CONCLUSIONS: Transient signal loss on DWI was successfully detected by dynamic EPDWI. The signal loss on DWI and overestimation of ADC could be partially remedied by increasing the number of excitations.


Subject(s)
Diffusion Magnetic Resonance Imaging , Parotid Gland/diagnostic imaging , Adult , Case-Control Studies , Echo-Planar Imaging , Female , Head and Neck Neoplasms/radiotherapy , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Parotid Gland/pathology , Radiography , Risk
4.
PLoS One ; 9(7): e102326, 2014.
Article in English | MEDLINE | ID: mdl-25029592

ABSTRACT

PURPOSE: To investigate the performance of hematoma shape, hematoma size, Glasgow coma scale (GCS) score, and intracerebral hematoma (ICH) score in predicting the 30-day mortality for ICH patients. To examine the influence of the estimation error of hematoma size on the prediction of 30-day mortality. MATERIALS AND METHODS: This retrospective study, approved by a local institutional review board with written informed consent waived, recruited 106 patients diagnosed as ICH by non-enhanced computed tomography study. The hemorrhagic shape, hematoma size measured by computer-assisted volumetric analysis (CAVA) and estimated by ABC/2 formula, ICH score and GCS score was examined. The predicting performance of 30-day mortality of the aforementioned variables was evaluated. Statistical analysis was performed using Kolmogorov-Smirnov tests, paired t test, nonparametric test, linear regression analysis, and binary logistic regression. The receiver operating characteristics curves were plotted and areas under curve (AUC) were calculated for 30-day mortality. A P value less than 0.05 was considered as statistically significant. RESULTS: The overall 30-day mortality rate was 15.1% of ICH patients. The hematoma shape, hematoma size, ICH score, and GCS score all significantly predict the 30-day mortality for ICH patients, with an AUC of 0.692 (P = 0.0018), 0.715 (P = 0.0008) (by ABC/2) to 0.738 (P = 0.0002) (by CAVA), 0.877 (P<0.0001) (by ABC/2) to 0.882 (P<0.0001) (by CAVA), and 0.912 (P<0.0001), respectively. CONCLUSION: Our study shows that hematoma shape, hematoma size, ICH scores and GCS score all significantly predict the 30-day mortality in an increasing order of AUC. The effect of overestimation of hematoma size by ABC/2 formula in predicting the 30-day mortality could be remedied by using ICH score.


Subject(s)
Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/mortality , Glasgow Coma Scale , Hematoma/pathology , Research Design , Area Under Curve , Cone-Beam Computed Tomography , Humans , Predictive Value of Tests , Regression Analysis , Retrospective Studies , Statistics, Nonparametric
5.
Med Phys ; 39(11): 6534-41, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23127048

ABSTRACT

PURPOSE: Previous studies have identified that impaired cerebral vasomotor reactivity (VMR) is associated with a higher risk of stroke and transient ischemic attack. This study aims to evaluate VMR by measuring the blood flow waveforms of the supplying arteries and dural sinuses using cine phase contrast MRI (PC MRI) and hypercapnic challenge. METHODS: PC MRI flow quantification was performed on an oblique slice approximately perpendicular to the target vessels to include the left (LICA) and right internal carotid artery (RICA), basilar artery (BA), sinus rectus (SR), and superior sagittal sinus (SSS). A total of four PC MRI scans were performed at different CO(2) concentrations (room air and 3%, 5%, and 7% CO(2)). RESULTS: The analyses obtained the flow parameters and cerebrovascular resistance parameters for all five vessels. Results indicated that the vascular resistance indices decreased with increasing CO(2) concentration in four vessels (LICA, RICA, BA, and SR). The obtained VMR parameters demonstrated exponential increases with increasing CO(2) concentration. CONCLUSIONS: Using entire blood flow waveforms, this study applied separate flow dynamics during systolic and diastolic periods to obtain cerebrovascular resistance parameters and extensive flow-related information. It is the first to investigate the cerebrovascular resistance parameters under hypercapnic challenge using cine MRI. This technique could provide a useful tool for clinical application in cerebrovascular disease.


Subject(s)
Carbon Dioxide/metabolism , Cerebral Arteries/metabolism , Cerebrovascular Circulation , Magnetic Resonance Imaging , Adult , Cerebral Arteries/physiology , Humans , Male , Young Adult
6.
Opt Express ; 19(21): 20604-9, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21997068

ABSTRACT

This study presents a photo-driven micro-lever fabricated to multiply optical forces using the two-photon polymerization 3D-microfabrication technique. The micro-lever is a second class lever comprising an optical trapping sphere, a beam, and a pivot. A micro-spring is placed between the short and long arms to characterize the induced force. This design enables precise manipulation of the micro-lever by optical tweezers at the micron scale. Under optical dragging, the sphere placed on the lever beam moves, resulting in torque that induces related force on the spring. The optical force applied at the sphere is approximately 100 to 300 pN, with a laser power of 100 to 300 mW. In this study, the optical tweezers drives the micro-lever successfully. The relationship between the optical force and the spring constant can be determined by using the principle of leverage. The arm ratio design developed in this study multiplies the applied optical force by 9. The experimental results are in good agreement with the simulation of spring property.


Subject(s)
Micromanipulation/instrumentation , Optical Tweezers , Algorithms , Elasticity , Equipment Design , Materials Testing , Micromanipulation/methods , Models, Statistical , Optics and Photonics , Photons , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...