Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 14(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235564

ABSTRACT

The purpose of this study was to examine whether Limonium tetragonum, cultivated in a smart-farming system with LED lamps, could increase exercise capacity in mice. C57BL/6 male mice were orally administered vehicle or Limonium tetragonum water extract (LTE), either 30 or 100 mg/kg, and were subjected to moderate intensity treadmill exercise for 4 weeks. Running distance markedly increased in the LTE group (100 mg/kg) by 80 ± 4% compared to the vehicle group, which was accompanied by a higher proportion of oxidative fibers (6 ± 6% vs. 10 ± 4%). Mitochondrial DNA content and gene expressions related to mitochondrial biogenesis were significantly increased in LTE-supplemented gastrocnemius muscles. At the molecular level, the expression of PGC-1α, a master regulator of fast-to-slow fiber-type transition, was increased downstream of the PKA/CREB signaling pathway. LTE induction of the PKA/CREB signaling pathway was also observed in C2C12 cells, which was effectively suppressed by PKA inhibitors H89 and Rp-cAMP. Altogether, these findings indicate that LTE treatment enhanced endurance exercise capacity via an improvement in mitochondrial biosynthesis and the increases in the formation of oxidative slow-twitch fibers. Future study is warranted to validate the exercise-enhancing effect of LTE in the human.


Subject(s)
Physical Conditioning, Animal , Plant Extracts , Plumbaginaceae , Running , Animals , DNA, Mitochondrial/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Organelle Biogenesis , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal/physiology , Physical Endurance , Plant Extracts/pharmacology , Plumbaginaceae/chemistry
2.
Nutrients ; 14(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36235689

ABSTRACT

Switching myofibers from the fast-glycolytic type to the slow-oxidative type is associated with an alleviation of the symptoms associated with various cardiometabolic diseases. This study investigates the effect of Vitis vinifera Jingzaojing leaf and shoot extract (JLSE), which is rich in phenolic compounds, on the regulation of skeletal muscle fiber-type switching, as well as the associated underlying mechanism. Male C57BL/6N mice were supplemented orally with vehicle or JLSE (300 mg/kg) and subjected to treadmill exercise training. After four weeks, mice in the JLSE-supplemented group showed significantly improved exercise endurance and mitochondrial oxidative capacity. JLSE supplementation increased the expression of sirtuin 6 and decreased Sox6 expression, thereby elevating the number of mitochondria and encouraging fast-to-slow myofiber switching. The results of our experiments suggest that JLSE supplementation reprograms myofiber composition to favor the slow oxidative type, ultimately enhancing exercise endurance.


Subject(s)
Physical Conditioning, Animal , Sirtuins , Vitis , Animals , Dietary Supplements , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Plant Leaves , Sirtuins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...