Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Front Immunol ; 15: 1411930, 2024.
Article in English | MEDLINE | ID: mdl-38881891

ABSTRACT

Introduction: Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods: We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results: eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion: Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.


Subject(s)
Kupffer Cells , Mice, Knockout , RNA-Binding Proteins , Sepsis , Animals , Kupffer Cells/immunology , Kupffer Cells/metabolism , Sepsis/immunology , Sepsis/metabolism , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mice, Inbred C57BL , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Male , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Disease Models, Animal , Inflammation/immunology , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mannose Receptor , Interleukin-6/metabolism
2.
Proc Natl Acad Sci U S A ; 121(22): e2318859121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771880

ABSTRACT

Megalin (low-density lipoprotein receptor-related protein 2) is a giant glycoprotein of about 600 kDa, mediating the endocytosis of more than 60 ligands, including those of proteins, peptides, and drug compounds [S. Goto, M. Hosojima, H. Kabasawa, A. Saito, Int. J. Biochem. Cell Biol. 157, 106393 (2023)]. It is expressed predominantly in renal proximal tubule epithelial cells, as well as in the brain, lungs, eyes, inner ear, thyroid gland, and placenta. Megalin is also known to mediate the endocytosis of toxic compounds, particularly those that cause renal and hearing disorders [Y. Hori et al., J. Am. Soc. Nephrol. 28, 1783-1791 (2017)]. Genetic megalin deficiency causes Donnai-Barrow syndrome/facio-oculo-acoustico-renal syndrome in humans. However, it is not known how megalin interacts with such a wide variety of ligands and plays pathological roles in various organs. In this study, we elucidated the dimeric architecture of megalin, purified from rat kidneys, using cryoelectron microscopy. The maps revealed the densities of endogenous ligands bound to various regions throughout the dimer, elucidating the multiligand receptor nature of megalin. We also determined the structure of megalin in complex with receptor-associated protein, a molecular chaperone for megalin. The results will facilitate further studies on the pathophysiology of megalin-dependent multiligand endocytic pathways in multiple organs and will also be useful for the development of megalin-targeted drugs for renal and hearing disorders, Alzheimer's disease [B. V. Zlokovic et al., Proc. Natl. Acad. Sci. U.S.A. 93, 4229-4234 (1996)], and other illnesses.


Subject(s)
Cryoelectron Microscopy , Low Density Lipoprotein Receptor-Related Protein-2 , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Animals , Humans , Rats , Ligands , Endocytosis , Agenesis of Corpus Callosum/metabolism , Agenesis of Corpus Callosum/genetics , Renal Tubular Transport, Inborn Errors , Myopia , Hernias, Diaphragmatic, Congenital , Proteinuria , Hearing Loss, Sensorineural
3.
Maxillofac Plast Reconstr Surg ; 45(1): 42, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108939

ABSTRACT

Orthognathic surgery, essential for addressing jaw and facial skeletal irregularities, has historically relied on traditional surgical planning (TSP) involving a series of time-consuming steps including two-dimensional radiographs. The advent of virtual surgical planning (VSP) and 3D printing technologies has revolutionized this field, bringing unprecedented precision and customization to surgical processes. VSP facilitates 3D visualization of the surgical site, allowing for real-time adjustments and improving preoperative stress for patients by reducing planning time. 3D printing dovetails with VSP, offering the creation of anatomical models and surgical guides, enhancing the predictability of surgical outcomes despite higher initial setup and material costs. The integration of VSP and 3D printing promises innovative and effective solutions in orthognathic surgery, surpassing the limitations of traditional methods. Patient-reported outcomes show a positive post-surgery impact on the quality of life, underlining the significant role of these technologies in enhancing self-esteem and reducing anxiety. Economic analyses depict a promising long-term fiscal advantage with these modern technologies, notwithstanding the higher initial costs. The review emphasizes the need for large-scale randomized controlled trials to address existing research gaps and calls for a deeper exploration into the long-term impacts and ethical considerations of these technologies. In conclusion, while standing on the cusp of a technological renaissance in orthognathic surgery, it is incumbent upon the medical fraternity to foster a collaborative approach, balancing innovation with scrutiny to enhance patient care. The narrative review encourages the leveraging of VSP and 3D printing technologies for more efficient and patient-centric orthognathic surgery, urging the community to navigate uncharted territories in pursuit of precision and efficiency in the surgical landscape.

4.
Sensors (Basel) ; 23(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37447942

ABSTRACT

Cracks have a primary effect on the failure of a structure. Therefore, the development of crack sensors with high accuracy and resolution and cracks detection method are important. In this study, the crack sensors were fabricated, and the crack locations were detected with the electrical signal of the crack sensor. First, a metal grid-type micro-crack sensor based on silver was fabricated. The sensor is made with electrohydrodynamics (EHD) inkjet printing technology, which is well known as the next generation of printed electronics technology. Optimal printing conditions were established through experiments, and a grid sensor was obtained. After that, single cracks and multiple cracks were simulated on the sensor, and electrical signals generated from the sensor were measured. The measured electrical signal tracked the location of the cracks in three steps: simple cross-calculation, interpolation, and modified P-SPICE. It was confirmed that cracks could be effectively found and displayed using the method presented in this paper.


Subject(s)
Computer Systems , Electricity , Electronics , Silver , Technology
5.
Mol Neurobiol ; 60(6): 3311-3328, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36853429

ABSTRACT

Abnormal calcium homeostasis, activation of protease calpain, generation of p25 and hyperactivation of cyclin-dependent kinase 5 (Cdk5) have all been implicated in the pathogenesis of neurogenerative diseases including Alzheimer's disease. We have recently shown that extracellular cold-inducible RNA-binding protein (eCIRP) induces Cdk5 activation via p25. However, the precise molecular mechanism by which eCIRP regulates calcium signaling and calpain remains to be addressed. We hypothesized that eCIRP regulates p25 via Ca2+-dependent calpain activation. eCIRP increased calpain activity and decreased the endogenous calpain inhibitor calpastatin in Neuro 2a (N2a) cells. Calpain inhibition with calpeptin attenuated eCIRP-induced calpain activity and p25. eCIRP specifically upregulated cytosolic calpain 1, and calpain 1 silencing attenuated the eCIRP-induced increase in p25. eCIRP stimulation increased cytosolic free Ca2+, especially in hippocampal neuronal HT22 cells, which was attenuated by the eCIRP inhibitor Compound 23 (C23). Endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor (IP3R) inhibition using 2-aminoethoxy-diphenyl-borate or xestospongin-C (X-C), interleukin-6 receptor alpha (IL-6Rα)-neutralization, and phospholipase C (PLC) inhibition with U73122 attenuated eCIRP-induced Ca2+ increase, while Ca2+ influx across the plasma membrane remained unaffected by eCIRP. Finally, C23, IL-6Rα antibody, U73122 and X-C attenuated eCIRP-induced p25 in HT-22 cells. In conclusion, the current study uncovers eCIRP-triggered Ca2+ release from ER stores in an IL-6Rα/PLC/IP3-dependent manner as a novel molecular mechanism underlying eCIRP's induction of Cdk5 activity and potential involvement in neurodegeneration.


Subject(s)
Calcium , Calpain , Calcium/metabolism , Calpain/metabolism , Neurons/metabolism , Phosphorylation , Proteolysis , RNA-Binding Proteins/metabolism
6.
Nat Commun ; 13(1): 6091, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241630

ABSTRACT

Multiple resistance and pH adaptation (Mrp) cation/proton antiporters are essential for growth of a variety of halophilic and alkaliphilic bacteria under stress conditions. Mrp-type antiporters are closely related to the membrane domain of respiratory complex I. We determined the structure of the Mrp antiporter from Bacillus pseudofirmus by electron cryo-microscopy at 2.2 Å resolution. The structure resolves more than 99% of the sidechains of the seven membrane subunits MrpA to MrpG plus 360 water molecules, including ~70 in putative ion translocation pathways. Molecular dynamics simulations based on the high-resolution structure revealed details of the antiport mechanism. We find that switching the position of a histidine residue between three hydrated pathways in the MrpA subunit is critical for proton transfer that drives gated trans-membrane sodium translocation. Several lines of evidence indicate that the same histidine-switch mechanism operates in respiratory complex I.


Subject(s)
Antiporters , Molecular Dynamics Simulation , Antiporters/metabolism , Bacterial Proteins/metabolism , Electron Transport Complex I/metabolism , Histidine , Hydrogen-Ion Concentration , Protons , Sodium/metabolism , Sodium-Hydrogen Exchangers/metabolism , Water/metabolism
7.
Mol Med ; 28(1): 91, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941574

ABSTRACT

BACKGROUND: Neutrophils are the most abundant innate immune cells in the circulating blood, and they act as the first responder against bacterial and fungal infection. However, accumulation of activated neutrophils can cause severe inflammation and tissue damage. Recently, neutrophil trogocytosis or membrane transfer with neighboring cells was reported to modulate immune responses. Extracellular cold-inducible RNA binding protein (eCIRP) is a newly identified damage-associated molecular pattern (DAMP). eCIRP can activate neutrophils to be more pro-inflammatory. This study aimed to identify the role of eCIRP in neutrophil trogocytosis during their trans-endothelial migration. METHODS: A trans-endothelial migration (TEM) assay using bone marrow neutrophils and mouse primary lung vascular endothelial cells was conducted using transwell chambers and neutrophil trogocytosis was assessed in vitro. In an in vivo mouse model of acute lung injury, neutrophil trogocytosis was assessed from bronchoalveolar lavage fluid. RESULTS: In TEM assay, the trogocytosis of neutrophils occurred during trans-endothelial migration and eCIRP significantly increased the percentage of these neutrophils. The trogocytosed neutrophils acquired the endothelial membrane containing junctional adhesion molecule-C (JAM-C) and VE-cadherin, and these membrane patches were polarized by Mac-1 binding. Furthermore, eCIRP-induced JAM-C positive trogocytosed neutrophils are more pro-inflammatory than the JAM-C negative counterpart. JAM-C positive trogocytosed neutrophils were also observed in the bronchoalveolar lavage fluid of a mouse model of acute lung injury. CONCLUSION: These data suggest that during the paracellular trans-endothelial migration of neutrophils in response to inflammation, eCIRP induces trogocytosis of neutrophils, and the trogocytosed neutrophils exhibit an exaggerated pro-inflammatory phenotype promoting acute lung injury.


Subject(s)
Acute Lung Injury , Neutrophils , Animals , Endothelial Cells/metabolism , Inflammation/metabolism , Mice , Trogocytosis
8.
Nat Commun ; 13(1): 2708, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577790

ABSTRACT

Cystinuria is a genetic disorder characterized by overexcretion of dibasic amino acids and cystine, causing recurrent kidney stones and kidney failure. Mutations of the regulatory glycoprotein rBAT and the amino acid transporter b0,+AT, which constitute system b0,+, are linked to type I and non-type I cystinuria respectively and they exhibit distinct phenotypes due to protein trafficking defects or catalytic inactivation. Here, using electron cryo-microscopy and biochemistry, we discover that Ca2+ mediates higher-order assembly of system b0,+. Ca2+ stabilizes the interface between two rBAT molecules, leading to super-dimerization of b0,+AT-rBAT, which in turn facilitates N-glycan maturation and protein trafficking. A cystinuria mutant T216M and mutations of the Ca2+ site of rBAT cause the loss of higher-order assemblies, resulting in protein trapping at the ER and the loss of function. These results provide the molecular basis of system b0,+ biogenesis and type I cystinuria and serve as a guide to develop new therapeutic strategies against it. More broadly, our findings reveal an unprecedented link between transporter oligomeric assembly and protein-trafficking diseases.


Subject(s)
Amino Acid Transport Systems, Basic , Calcium , Cystinuria , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems, Basic/metabolism , Amino Acid Transport Systems, Basic/ultrastructure , Calcium/chemistry , Calcium/metabolism , Cystine/metabolism , Cystinuria/genetics , Cystinuria/metabolism , Humans
9.
J Immunol ; 208(9): 2184-2195, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35418465

ABSTRACT

Extracellular cold-inducible RNA binding protein (eCIRP) is an inflammatory mediator that causes inflammation and tissue injury in sepsis. Gasdermin D (GSDMD) is a protein that, when cleaved, forms pores in the cell membrane, releasing intracellular contents into the extracellular milieu to exacerbate inflammation. We hypothesize that eCIRP is released actively from viable macrophages via GSDMD pores. We found that LPS induced eCIRP secretion from macrophages into the extracellular space. LPS significantly increased the expression of caspase-11 and cleavage of the GSDMD, as evidenced by increased N-terminal GSDMD expression in RAW 264.7 cells and mouse primary peritoneal macrophages. GSDMD inhibitor disulfiram decreased eCIRP release in vitro. Treatment with glycine to prevent pyroptosis-induced cell lysis did not significantly decrease eCIRP release from LPS-treated macrophages, indicating that eCIRP was actively released and was independent of pyroptosis. Downregulation of GSDMD gene expression by siRNA transfection suppressed eCIRP release in vitro after LPS stimulation. Moreover, GSDMD-/- peritoneal macrophages and mice had decreased levels of eCIRP in the culture supernatants and in blood treated with LPS in vitro and in vivo, respectively. GSDMD inhibitor disulfiram inhibited serum levels of eCIRP in endotoxemia and cecal ligation and puncture-induced sepsis. We conclude that eCIRP release from living macrophages is mediated through GSDMD pores, suggesting that targeting GSDMD could be a novel and potential therapeutic approach to inhibit eCIRP-mediated inflammation in sepsis.


Subject(s)
Lipopolysaccharides , Sepsis , Animals , Disulfiram , Inflammation , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/pharmacology , Mice , Phosphate-Binding Proteins/metabolism
10.
Maxillofac Plast Reconstr Surg ; 44(1): 11, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35298724

ABSTRACT

BACKGROUND: Many studies on maintaining the condyle in a normal or anatomical position during orthognathic surgery have been conducted to stabilize surgical outcomes and prevent iatrogenic temporomandibular joint complications. The aim of this study is to evaluate the changes in condylar positions after orthognathic surgery using virtual surgical planning via the balanced orthognathic surgery (BOS) system. METHODS: Postoperative changes in condylar position were retrospectively evaluated in 22 condyles of 11 patients with skeletal class III malocclusion who underwent orthognathic surgery using virtual surgical planning via the BOS system. The center point coordinates of the condylar head before and after orthognathic surgery were analyzed using voxel-based registration. RESULTS: Changes in the condylar position mainly occurred downward in the y-axis (-1.09 ± 0.62 mm) (P < 0.05). The change in the x-axis (0.02 ± 0.68 mm) and z-axis (0.01 ± 0.48 mm) showed no significant difference between before and after orthognathic surgery. CONCLUSION: These results indicate that the changes in the condylar positions after orthognathic surgery using virtual surgical planning via the BOS system mainly occurred downward in the y-axis, with slight changes in the x- and z-axes. The change in the condylar position after orthognathic surgery using the BOS system is clinically acceptable.

11.
Elife ; 102021 03 23.
Article in English | MEDLINE | ID: mdl-33752801

ABSTRACT

Channelrhodopsins (ChRs) are microbial light-gated ion channels utilized in optogenetics to control neural activity with light . Light absorption causes retinal chromophore isomerization and subsequent protein conformational changes visualized as optically distinguished intermediates, coupled with channel opening and closing. However, the detailed molecular events underlying channel gating remain unknown. We performed time-resolved serial femtosecond crystallographic analyses of ChR by using an X-ray free electron laser, which revealed conformational changes following photoactivation. The isomerized retinal adopts a twisted conformation and shifts toward the putative internal proton donor residues, consequently inducing an outward shift of TM3, as well as a local deformation in TM7. These early conformational changes in the pore-forming helices should be the triggers that lead to opening of the ion conducting pore.


Subject(s)
Algal Proteins/genetics , Channelrhodopsins/genetics , Chlamydomonas reinhardtii/genetics , Algal Proteins/chemistry , Algal Proteins/metabolism , Amino Acid Sequence , Channelrhodopsins/chemistry , Channelrhodopsins/metabolism , Chlamydomonas reinhardtii/metabolism , Crystallography , Isomerism , Protein Conformation , Protein Structure, Secondary , Sequence Alignment
12.
J Oral Maxillofac Surg ; 79(5): 1146.e1-1146.e25, 2021 05.
Article in English | MEDLINE | ID: mdl-33539812

ABSTRACT

PURPOSE: Accuracy in orthognathic surgery with virtual planning has been reported, but detailed analysis of accuracy according to anatomic location, including the mandibular condyle, is insufficient. The purpose of this study was to compare the virtual plan and surgical outcomes and analyze the degree and distribution of errors according to each anatomic location. PATIENTS AND METHODS: This retrospective cohort study evaluated skeletal class III patients, treated with bimaxillary surgery. The primary predictor was anatomic locations that consisted of right and left condyles, maxilla, and the distal segment of the mandible. Other variables were age and gender. The primary outcome was surgical accuracy, defined as mean 3-dimensional distance error, mean absolute error, and mean error along the horizontal, vertical, and anteroposterior axes between the virtual plan and surgical outcomes. Landmarks were compared using a computational method based on affine transformation with a 1-time landmark setting. The mean errors were visualized with multidimensional scattergrams. Bivariate and regression statistics were computed. RESULTS: This study included 52 patients, 26 men and 26 women, with a mean age of 21 years and 3 months. The mean 3D distance errors for condylar landmarks, maxillary landmarks, and landmarks on the distal segment of the mandible were 1.03, 1.25, and 2.24 mm, respectively. Condylar landmarks, maxillary landmarks, and the landmarks on the distal segment of the mandible were positioned at 0.49 mm inferior, 0.28 mm anterior, and 1.25 mm inferior, respectively. The landmark errors for the distal segment of the mandible exhibited a wider distribution than those for condylar and maxillary landmarks. CONCLUSIONS: Agreement between the planned and actual outcome aided by virtual surgical planning was highest for the condyles, followed by the maxilla, and the distal segment of the mandible. It is important to consider the tendency for surgical errors in each anatomic location during operations.


Subject(s)
Orthognathic Surgery , Orthognathic Surgical Procedures , Surgery, Computer-Assisted , Adult , Female , Humans , Imaging, Three-Dimensional , Male , Mandible , Maxilla , Retrospective Studies , Young Adult
13.
Front Immunol ; 12: 780210, 2021.
Article in English | MEDLINE | ID: mdl-35003095

ABSTRACT

Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern promoting inflammation and tissue injury. During bacterial or viral infection, macrophages release DNA decorated with nuclear and cytoplasmic proteins known as macrophage extracellular traps (METs). Gasdermin D (GSDMD) is a pore-forming protein that has been involved in extracellular trap formation in neutrophils. We hypothesized that eCIRP induces MET formation by activating GSDMD. Human monocytic cell line THP-1 cells were differentiated with phorbol 12-myristate 13-acetate (PMA) and treated with recombinant murine (rm) CIRP. The MET formation was detected by three methods: time-lapse fluorescence microscopy (video imaging), colorimetry, and ELISA. Cleaved forms of GSDMD, and caspase-1 were detected by Western blotting. Treatment of THP-1 cells with rmCIRP increased MET formation as revealed by SYTOX Orange Staining assay in a time- and dose-dependent manner. METs formed by rmCIRP stimulation were further confirmed by extracellular DNA, citrullinated histone H3, and myeloperoxidase. Treatment of THP-1 cells with rmCIRP significantly increased the cleaved forms of caspase-1 and GSDMD compared to PBS-treated cells. Treatment of macrophages with caspase-1, and GSDMD inhibitors z-VAD-fmk, and disulfiram, separately, significantly decreased rmCIRP-induced MET formation. We also confirmed rmCIRP-induced MET formation using primary cells murine peritoneal macrophages. These data clearly show that eCIRP serves as a novel inducer of MET formation through the activation of GSDMD and caspase-1.


Subject(s)
Extracellular Traps/immunology , Macrophages/immunology , Phosphate-Binding Proteins/immunology , Pore Forming Cytotoxic Proteins/immunology , RNA-Binding Proteins/immunology , Animals , Cells, Cultured , Extracellular Traps/metabolism , Humans , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , RNA-Binding Proteins/metabolism , THP-1 Cells
14.
Protein Sci ; 29(12): 2398-2407, 2020 12.
Article in English | MEDLINE | ID: mdl-33016372

ABSTRACT

System xc - is an amino acid antiporter that imports L-cystine into cells and exports intracellular L-glutamate, at a 1:1 ratio. As L-cystine is an essential precursor for glutathione synthesis, system xc - supports tumor cell growth through glutathione-based oxidative stress resistance and is considered as a potential therapeutic target for cancer treatment. System xc - consists of two subunits, the light chain subunit SLC7A11 (xCT) and the heavy chain subunit SLC3A2 (also known as CD98hc or 4F2hc), which are linked by a conserved disulfide bridge. Although the recent structures of another SLC7 member, L-type amino acid transporter 1 (LAT1) in complex with CD98hc, have provided the structural basis toward understanding the amino acid transport mechanism, the detailed molecular mechanism of xCT remains unknown. To revealthe molecular mechanism, we performed single-particle analyses of the xCT-CD98hc complex. As wild-type xCT-CD98hc displayed poor stability and could not be purified to homogeneity, we applied a consensus mutagenesis approach to xCT. The consensus mutated construct exhibited increased stability as compared to the wild-type, and enabled the cryoelectron microscopy (cryo-EM) map to be obtained at 6.2 Å resolution by single-particle analysis. The cryo-EM map revealed sufficient electron density to assign secondary structures. In the xCT structure, the hash and arm domains are well resolved, whereas the bundle domain shows some flexibility. CD98hc is positioned next to the xCT transmembrane domain. This study provides the structural basis of xCT, and our consensus-based strategy could represent a good choice toward solving unstable protein structures.


Subject(s)
Amino Acid Transport System y+/chemistry , Amino Acid Transport System y+/ultrastructure , Cryoelectron Microscopy , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Animals , Fusion Regulatory Protein 1, Heavy Chain/chemistry , Fusion Regulatory Protein 1, Heavy Chain/genetics , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Fusion Regulatory Protein 1, Heavy Chain/ultrastructure , HEK293 Cells , Humans , Mutagenesis , Protein Domains , Protein Stability , Protein Structure, Secondary , Sf9 Cells , Spodoptera
15.
J Nanosci Nanotechnol ; 20(7): 4385-4389, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968480

ABSTRACT

In this paper, a mechanism of sensors for micro crack detection is proposed according to circuit disconnection. In order to detect micro cracks, sensitive sensors based on micropatterning using a electrohydrodynamic (EHD) technology are necessary. For EHD printing, it is essential to find an optimum condition between ink materials and environmental parameters. Therefore, the distribution of the jetting mode between the flow rate and the voltage is confirmed through experiments. Metal-grid was patterned and resistance of each circuit by crack occurrence was measured. The resistance changes are occurred at the position where the crack is generated, and the crack position can be estimated with grid type sensors. The resistance in the cracked circuits are relatively larger than it in non-cracked circuits. It was confirmed that micro cracks were well detected by using the proposed crack sensors and mechanisms.

16.
Yale J Biol Med ; 92(4): 687-694, 2019 12.
Article in English | MEDLINE | ID: mdl-31866783

ABSTRACT

Cell death can occur through numerous regulated mechanisms, from apoptosis to necrosis, entosis, and others. Each has a distinct mode of regulation and effect on tissue homeostasis. While the elimination of individual cells is typically considered the relevant physiologic endpoint of cell death, in some cases the remnants left behind by death can also function to support tissue homeostasis. Here we discuss specific functions of the end products of cell death, and how "after-death" functions may contribute to the roles of programmed cell death in physiology.


Subject(s)
Apoptosis , Animals , Entosis , Humans , Models, Biological , Phagocytosis
17.
Nat Struct Mol Biol ; 26(6): 510-517, 2019 06.
Article in English | MEDLINE | ID: mdl-31160781

ABSTRACT

The L-type amino acid transporter 1 (LAT1 or SLC7A5) transports large neutral amino acids across the membrane and is crucial for brain drug delivery and tumor growth. LAT1 forms a disulfide-linked heterodimer with CD98 heavy chain (CD98hc, 4F2hc or SLC3A2), but the mechanism of assembly and amino acid transport are poorly understood. Here we report the cryo-EM structure of the human LAT1-CD98hc heterodimer at 3.3-Å resolution. LAT1 features a canonical Leu T-fold and exhibits an unusual loop structure on transmembrane helix 6, creating an extended cavity that might accommodate bulky amino acids and drugs. CD98hc engages with LAT1 through the extracellular, transmembrane and putative cholesterol-mediated interactions. We also show that two anti-CD98 antibodies recognize distinct, multiple epitopes on CD98hc but not its glycans, explaining their robust reactivities. These results reveal the principles of glycoprotein-solute carrier assembly and provide templates for improving preclinical drugs and antibodies targeting LAT1 or CD98hc.


Subject(s)
Fusion Regulatory Protein 1, Heavy Chain/chemistry , Large Neutral Amino Acid-Transporter 1/chemistry , Cryoelectron Microscopy , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Fusion Regulatory Protein 1, Heavy Chain/ultrastructure , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/ultrastructure , Models, Molecular , Protein Conformation , Protein Folding , Protein Multimerization
18.
Cell Rep ; 26(12): 3212-3220.e4, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30893595

ABSTRACT

Metazoan cell death mechanisms are diverse and include numerous non-apoptotic programs. One program called entosis involves the invasion of live cells into their neighbors and is known to occur in cancers. Here, we identify a developmental function for entosis: to clear the male-specific linker cell in C. elegans. The linker cell leads migration to shape the gonad and is removed to facilitate fusion of the gonad to the cloaca. We find that the linker cell is cleared in a manner involving cell-cell adhesions and cell-autonomous control of uptake through linker cell actin. Linker cell entosis generates a lobe structure that is deposited at the site of gonad-to-cloaca fusion and is removed during mating. Inhibition of lobe scission inhibits linker cell death, demonstrating that the linker cell invades its host while alive. Our findings demonstrate a developmental function for entosis: to eliminate a migrating cell and facilitate gonad-to-cloaca fusion, which is required for fertility.


Subject(s)
Caenorhabditis elegans/metabolism , Cell Communication/physiology , Entosis/physiology , Animals , Cell Adhesion/physiology
19.
Structure ; 26(9): 1284-1296.e4, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30196811

ABSTRACT

Secondary active transporters translocate their substrates using the electrochemical potentials of other chemicals and undergo large-scale conformational changes. Despite extensive structural studies, the atomic details of the transport mechanism still remain elusive. We performed a series of all-atom molecular dynamics simulations of the triose-phosphate/phosphate translocator (TPT), which exports organic phosphates in the chloroplast stroma in strict counter exchange with inorganic phosphate (Pi). Biased sampling methods, including the string method and umbrella sampling, successfully reproduced the conformational changes between the inward- and outward-facing states, along with the substrate binding. The free energy landscape of this entire TPT transition pathway demonstrated the alternating access and substrate translocation mechanisms, which revealed that Pi is relayed by positively charged residues along the transition pathway. Furthermore, the conserved Glu207 functions as a "molecular switch", linking the local substrate binding and the global conformational transition. Our results provide atomic-detailed insights into the substrate transport mechanism of the antiporter.


Subject(s)
Algal Proteins/chemistry , Algal Proteins/metabolism , Rhodophyta/metabolism , Biological Transport , Computer Simulation , Hydrogen Bonding , Molecular Dynamics Simulation , Phosphates/metabolism , Protein Folding , Rhodophyta/chemistry
20.
Nat Plants ; 3(10): 825-832, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28970497

ABSTRACT

The triose-phosphate/phosphate translocator (TPT) catalyses the strict 1:1 exchange of triose-phosphate, 3-phosphoglycerate and inorganic phosphate across the chloroplast envelope, and plays crucial roles in photosynthesis. Despite rigorous study for more than 40 years, the molecular mechanism of TPT is poorly understood because of the lack of structural information. Here we report crystal structures of TPT bound to two different substrates, 3-phosphoglycerate and inorganic phosphate, in occluded conformations. The structures reveal that TPT adopts a 10-transmembrane drug/metabolite transporter fold. Both substrates are bound within the same central pocket, where conserved lysine, arginine and tyrosine residues recognize the shared phosphate group. A structural comparison with the outward-open conformation of the bacterial drug/metabolite transporter suggests a rocker-switch motion of helix bundles, and molecular dynamics simulations support a model in which this rocker-switch motion is tightly coupled to the substrate binding, to ensure strict 1:1 exchange. These results reveal the unique mechanism of sugar phosphate/phosphate exchange by TPT.


Subject(s)
Phosphate Transport Proteins/chemistry , Phosphate Transport Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Arabidopsis/metabolism , Glyceric Acids/chemistry , Glyceric Acids/metabolism , Models, Molecular , Phosphates/chemistry , Phosphates/metabolism , Protein Conformation , Rhodophyta/metabolism , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...