Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36560304

ABSTRACT

Steel is one of the most basic ingredients, which plays an important role in the machinery industry. However, the steel surface defects heavily affect its quality. The demand for surface defect detectors draws much attention from researchers all over the world. However, there are still some drawbacks, e.g., the dataset is limited accessible or small-scale public, and related works focus on developing models but do not deeply take into account real-time applications. In this paper, we investigate the feasibility of applying stage-of-the-art deep learning methods based on YOLO models as real-time steel surface defect detectors. Particularly, we compare the performance of YOLOv5, YOLOX, and YOLOv7 while training them with a small-scale open-source NEU-DET dataset on GPU RTX 2080. From the experiment results, YOLOX-s achieves the best accuracy of 89.6% mAP on the NEU-DET dataset. Then, we deploy the weights of trained YOLO models on Nvidia devices to evaluate their real-time performance. Our experiments devices consist of Nvidia Jetson Nano and Jetson Xavier AGX. We also apply some real-time optimization techniques (i.e., exporting to TensorRT, lowering the precision to FP16 or INT8 and reducing the input image size to 320 × 320) to reduce detection speed (fps), thus also reducing the mAP accuracy.


Subject(s)
Industry , Research Personnel , Humans , Steel , Machine Learning
2.
PLoS One ; 17(4): e0267643, 2022.
Article in English | MEDLINE | ID: mdl-35476649

ABSTRACT

BACKGROUND: A high false-negative rate has been reported for the diagnosis of ossification of the posterior longitudinal ligament (OPLL) using plain radiography. We investigated whether deep learning (DL) can improve the diagnostic performance of radiologists for cervical OPLL using plain radiographs. MATERIALS AND METHODS: The training set consisted of 915 radiographs from 207 patients diagnosed with OPLL. For the test set, we used 200 lateral cervical radiographs from 100 patients with cervical OPLL and 100 patients without OPLL. An observer performance study was conducted over two reading sessions. In the first session, we compared the diagnostic performance of the DL-model and the six observers. The diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUC) at the vertebra and patient level. The sensitivity and specificity of the DL model and average observers were calculated in per-patient analysis. Subgroup analysis was performed according to the morphologic classification of OPLL. In the second session, observers evaluated the radiographs by referring to the results of the DL-model. RESULTS: In the vertebra-level analysis, the DL-model showed an AUC of 0.854, which was higher than the average AUC of observers (0.826), but the difference was not significant (p = 0.292). In the patient-level analysis, the performance of the DL-model had an AUC of 0.851, and the average AUC of observers was 0.841 (p = 0.739). The patient-level sensitivity and specificity were 91% and 69% in the DL model, and 83% and 68% for the average observers, respectively. Both the DL-model and observers showed decreases in overall performance in the segmental and circumscribed types. With knowledge of the results of the DL-model, the average AUC of observers increased to 0.893 (p = 0.001) at the vertebra level and 0.911 (p < 0.001) at the patient level. In the subgroup analysis, the improvement was largest in segmental-type (AUC difference 0.087; p = 0.002). CONCLUSIONS: The DL-based OPLL detection model can significantly improve the diagnostic performance of radiologists on cervical radiographs.


Subject(s)
Deep Learning , Ossification of Posterior Longitudinal Ligament , Cervical Vertebrae/diagnostic imaging , Humans , Longitudinal Ligaments , Ossification of Posterior Longitudinal Ligament/diagnostic imaging , Osteogenesis , Radiography
3.
PLoS One ; 13(1): e0190858, 2018.
Article in English | MEDLINE | ID: mdl-29304077

ABSTRACT

In femtosecond laser-assisted cataract surgery, the parameter such as horizontal spot spacing and energy level can be adjusted. Although there have been several studies reported on various laser systems, showing the effects of varying energy levels and horizontal spot spacing on lens capsulotomy cut edges, none have been reported on the Catalys laser system (Abbott Medical Optics, Inc., Santa Ana, CA). The aim of this study is to evaluate, using scanning electron microscopy (SEM), the quality of the cut edges of the laser lens capsulotomy obtained using the Catalys Laser System, using different horizontal spot spacing and energy levels, and to determine the ideal parameters based on SEM results. Fifty rabbit capsulorhexis specimens from a femtosecond laser with different spot spacing and energy settings were divided into five groups randomly. Spot spacing was 3 um and laser pulse energy was 4 uJ in group 1. The respective values were 5 um and 2 uJ in group 2, 5 um and 4 uJ in group 3, 5 um and 6 uJ in group 4, and 7 um and 4 uJ in group 5. All samples were evaluated using SEM to compare the number of tags per capsulotomy and the laser emission time. Group 1 had a significantly lower tag formation than groups 3 and 5 (P = 0.042 and 0.021, respectively). Although the laser emission time increased about 1.5 sec as the spot spacing increased from 3 to 7 um, the quality of the cut was smoother in group 1 because of overlapping effect of photodisruption cavities. There was no significant difference between groups 2, 3 and 4 at different laser energy settings. In an ex-vivo study, samples from an energy setting of 10 uJ showed increased irregularity and damage. The degree of irregularity was higher at increasing spot spacing and laser energy settings, with abundant tag formation. Dense spot spacing with low-energy settings provide a better cut quality, which is probably correlated with the reduction in anterior capsular tear complications.


Subject(s)
Anterior Capsule of the Lens/surgery , Cataract Extraction/methods , Laser Therapy , Animals , Anterior Capsule of the Lens/ultrastructure , Female , In Vitro Techniques , Male , Microscopy, Electron, Scanning , Rabbits
4.
Langmuir ; 33(47): 13554-13560, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29125766

ABSTRACT

A highly sensitive organic field-effect transistor (OFET)-based sensor for ammonia in the range of 0.01 to 25 ppm was developed. The sensor was fabricated by employing an array of single-crystal poly(3-hexylthiophene) (P3HT) nanowires as the organic semiconductor (OSC) layer of an OFET with a top-contact geometry. The electrical characteristics (field-effect mobility, on/off current ratio) of the single-crystal P3HT nanowire OFET were about 2 orders of magnitude larger than those of the P3HT thin film OFET with the same geometry. The P3HT nanowire OFET showed excellent sensitivity to ammonia, about 3 times higher than that of the P3HT thin film OFET at 25 ppm ammonia. The ammonia response of the OFET was reversible and was not affected by changes in relative humidity from 45 to 100%. The high ammonia sensitivity of the P3HT nanowire OFET is believed to result from the single crystal nature and high surface/volume ratio of the P3HT nanowire used in the OSC layer.

5.
ACS Omega ; 2(7): 3380-3389, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-28782048

ABSTRACT

The use of a nanoparticle (NP)-based antitumor drug carrier has been an emerging strategy for selectively delivering the drugs to the tumor area and, thus, reducing the side effects that are associated with a high systemic dose of antitumor drugs. Precise control of drug loading and release is critical so as to maximize the therapeutic index of the NPs. Here, we propose a simple method of synthesizing NPs with tunable drug release while maintaining their loading ability, by varying the polymer matrix density of amine- or carboxyl-functionalized hydrogel NPs. We find that the NPs with a loose matrix released more cisplatin, with up to a 33 times faster rate. Also, carboxyl-functionalized NPs loaded more cisplatin and released it at a faster rate than amine-functionalized NPs. We performed detailed Monte Carlo computer simulations that elucidate the relation between the matrix density and drug release kinetics. We found good agreement between the simulation model and the experimental results for drug release as a function of time. Also, we compared the cellular uptake between amine-functionalized NPs and carboxyl-functionalized NPs, as a higher cellular uptake of NPs leads to improved cisplatin delivery. The amine-functionalized NPs can deliver 3.5 times more cisplatin into cells than the carboxyl-functionalized NPs. The cytotoxic efficacy of both the amine-functionalized NPs and the carboxyl-functionalized NPs showed a strong correlation with the cisplatin release profile, and the latter showed a strong correlation with the NP matrix density.

6.
ACS Appl Mater Interfaces ; 9(6): 5399-5408, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28106374

ABSTRACT

This work presents a novel barrier thin film based on an organic-inorganic nanolaminate, which consists of alternating nanolayers of self-assembled organic layers (SAOLs) and Al2O3. The SAOLs-Al2O3 nanolaminated films were deposited using a combination of molecular layer deposition and atomic layer deposition techniques at 80 °C. Modulation of the relative thickness ratio of the SAOLs and Al2O3 enabled control over the elastic modulus and stress in the films. Furthermore, the SAOLs-Al2O3 thin film achieved a high degree of mechanical flexibility, excellent transmittance (>95%), and an ultralow water-vapor transmission rate (2.99 × 10-7 g m-2 day-1), which represents one of the lowest permeability levels ever achieved by thin film encapsulation. On the basis of its outstanding barrier properties with high flexibility and transparency, the nanolaminated film was applied to a commercial OLEDs panel as a gas-diffusion barrier film. The results showed defect propagation could be significantly inhibited by incorporating the SAOLs layers, which enhanced the durability of the panel.

7.
Adv Mater ; 29(6)2017 Feb.
Article in English | MEDLINE | ID: mdl-27885700

ABSTRACT

Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed.

8.
Angew Chem Int Ed Engl ; 55(35): 10273-7, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27461905

ABSTRACT

We directly observed charge separation and a space-charge region in an organic single-crystal p-n heterojunction nanowire, by means of scanning photocurrent microscopy. The axial p-n heterojunction nanowire had a well-defined planar junction, consisted of P3HT (p-type) and C60 (n-type) single crystals and was fabricated by means of the recently developed inkjet-assisted nanotransfer printing technique. The depletion region formed at the p-n junction was directly observed by exploring the spatial distribution of photogenerated carriers along the heterojunction nanowire under various applied bias voltages. Our study provides a facile approach toward the precise characterization of charge transport in organic heterojunction systems as well as the design of efficient nanoscale organic optoelectronic devices.

9.
Nanoscale ; 8(9): 5000-5, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26864992

ABSTRACT

Graphene applications require high precision control of the Fermi level and carrier concentration via a nondestructive doping method. Here, we develop an effective n-doping technique using atomic layer deposition (ALD) of ZnO thin films on graphene through a reactive molecular layer. This ALD doping method is nondestructive, simple, and precise. The ZnO thin films on graphene are uniform, conformal, of good quality with a low density of pinholes, and finely tunable in thickness with 1 Å resolution. We demonstrate graphene transistor control in terms of the Dirac point, carrier density, and doping state as a function of the ZnO thickness. Moreover, ZnO functions as an effective thin-film barrier against air-borne water and oxygen on the graphene, resulting in extraordinary stability in air for graphene devices. ZnO ALD was also applied to other two-dimensional materials including MoS2 and WSe2, which substantially enhanced electron mobility.

10.
Adv Mater ; 28(15): 2874-80, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26891239

ABSTRACT

Inkjet-assisted nanotransfer printing (inkjet-NTP) facilitates spatial control of many arrays of various organic functional materials on a single substrate with a high-throughput integration process, enabling monolithic integration of various organic nanopatterns. Inkjet-NTP enables wafer-scale organic electronic circuits composed of field-effect transistors, complementary inverters, and p-n diodes, demonstrating its capability to produce a high-performance, multifunctional organic chip.

11.
Nanoscale ; 7(42): 17702-9, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26452020

ABSTRACT

Large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain numerous grain boundaries that can greatly degrade their performance and produce inhomogeneous properties. A better grain boundary engineering in CVD graphene is essential to realize the full potential of graphene in large-scale applications. Here, we report a defect-selective atomic layer deposition (ALD) for stitching grain boundaries of CVD graphene with ZnO so as to increase the connectivity between grains. In the present ALD process, ZnO with a hexagonal wurtzite structure was selectively grown mainly on the defect-rich grain boundaries to produce ZnO-stitched CVD graphene with well-connected grains. For the CVD graphene film after ZnO stitching, the inter-grain mobility is notably improved with only a little change in the free carrier density. We also demonstrate how ZnO-stitched CVD graphene can be successfully integrated into wafer-scale arrays of top-gated field-effect transistors on 4-inch Si and polymer substrates, revealing remarkable device-to-device uniformity.

12.
Nano Lett ; 15(1): 289-93, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25470380

ABSTRACT

We fabricated cross-stacked organic p-n nanojunction arrays made of single-crystal 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) and fullerene (C60) nanowires as p-type and n-type semiconductors, respectively, by using a nanotransfer printing technique. Single-crystal C60 nanowires were synthesized inside nanoscale channels of a mold and directly transferred onto a desired position of a flexible substrate by a lubricant liquid layer. In the consecutive printing process, single-crystal TIPS-PEN nanowires were grown in the same way and then perpendicularly aligned and placed onto the C60 nanowire arrays, resulting in a cross-stacked single-crystal organic p-n nanojunction array. The cross-stacked single-crystal TIPS-PEN/C60 nanowire p-n nanojunction devices show rectifying behavior with on/off ratio of ∼ 13 as well as photodiode characteristic with photogain of ∼ 2 under a light intensity of 12.2 mW/cm(2). Our study provides a facile, solution-processed approach to fabricate a large-area array of organic crystal nanojunction devices in a desired arrangement for future nanoscale electronics.

13.
Nano Lett ; 14(6): 3321-7, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24848306

ABSTRACT

We developed single-crystal poly(3,4-ethylenedioxythiopene) (PEDOT) nanowires with ultrahigh conductivity using liquid-bridge-mediated nanotransfer printing with vapor phase polymerization. The single-crystal PEDOT nanowires are formed from 3,4-ethylenedioxythiophene (EDOT) monomers that are self-assembled and crystallized during vapor phase polymerization process within nanoscale channels of a mold having FeCl3 catalysts. These PEDOT nanowires, aligned according to the pattern in the mold, are then directly transferred to specific positions on a substrate to generate a nanowire array by a direct printing process. The PEDOT nanowires have closely packed single-crystalline structures with orthorhombic lattice units. The conductivity of the single-crystal PEDOT nanowires is an average of 7619 S/cm with the highest up to 8797 S/cm which remarkably exceeds literature values of PEDOT nanostructures/thin films. Such distinct conductivity enhancement of single-crystal PEDOT nanowires can be attributed to improved carrier mobility in PEDOT nanowires. To demonstrate usefulness of single-crystal PEDOT nanowires, we fabricated an organic nanowire field-effect transistor array contacting the ultrahigh conductive PEDOT nanowires as metal electrodes.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Nanoparticles/chemistry , Nanowires/chemistry , Polymers/chemistry , Nanoparticles/ultrastructure , Nanowires/ultrastructure
14.
Chem Mater ; 26(4): 1592-1600, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24701030

ABSTRACT

This work is aimed at engineering photosensitizer embedded nanoparticles (NPs) that produce optimal amount of reactive oxygen species (ROS) for photodynamic therapy (PDT). A revised synthetic approach, coupled with improved analytical tools, resulted in more efficient PDT. Specifically, methylene blue (MB) conjugated polyacrylamide nanoparticles (PAA NPs), with a polyethylene glycol dimethacrylate (PEGDMA, Mn 550) cross-linker, were synthesized so as to improve the efficacy of cancer PDT. The long cross-linker chain, PEGDMA, increases the distance between the conjugated MB molecules so as to avoid self-quenching of the excited states or species, and also enhances the oxygen permeability of the NP matrix, when compared to the previously used shorter cross-linker. The overall ROS production from the MB-PEGDMA PAA NPs was evaluated using the traditional way of monitoring the oxidation rate kinetics of anthracence-9,10-dipropionic acid (ADPA). We also applied singlet oxygen sensor green (SOSG) so as to selectively derive the singlet oxygen (1O2) production rate. This analysis enabled us to investigate the ROS composition mix based on varied MB loading. To effectively obtain the correlation between the ROS productivity and the cell killing efficacy, a microfluidic chip device was employed to provide homogeneous light illumination from an LED for rapid PDT efficacy tests, enabling simultaneous multiple measurements while using only small amounts of NPs sample. This provided multiplexed, comprehensive PDT efficacy assays, leading to the determination of a near optimal loading of MB in a PAA matrix for high PDT efficacy by measuring the light-dose-dependent cell killing effects of the various MB-PEGDMA PAA NPs using C6 glioma cancer cells.

15.
Macromol Biosci ; 14(8): 1106-15, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24771682

ABSTRACT

The efficacy of chemotherapy is often inhibited by multidrug resistance (MDR). A highly engineerable hydrogel nanoparticle (NP) serves as a carrier for the optimal codelivery to tumor cells of the chemodrug, doxorubicin (Dox) and the chemosensitizer, verapamil (Vera), aiming at alleviating tumor MDR. The hydrogel NPs are prepared via the copolymerization of acrylamide and 2-carboxyethyl acrylate. Dox and Vera are post-loaded into the respective NPs, with drug loading around 7.7 wt% and 8.0 wt%, respectively. The codelivery of Dox-NPs and Vera-NPs increases the intracellular accumulation of Dox, and significantly enhances the cell killing ability of Dox with respect to NCI/ADR-RES cells in vitro. These findings suggest that such codelivery nanoplatforms provide a promising route for overcoming tumor MDR.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems/methods , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Hydrogel, Polyethylene Glycol Dimethacrylate/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Analysis of Variance , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Doxorubicin/administration & dosage , Humans , Microscopy, Confocal , Verapamil/administration & dosage
16.
Lab Chip ; 14(5): 892-901, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24394779

ABSTRACT

We present a novel high-throughput microfluidic platform that enables the evaluation of the anticancer efficacy of photodynamic therapy (PDT) drugs over multiple microenvironmental factors. PDT is uniquely complex, originating from its dependence on three separate but essential elements: drug (also called photosensitizer), oxygen, and light. Thus, obtaining a reliable evaluation of PDT efficacy is highly challenging, requiring considerable effort and time to evaluate all three interdependent parameters. In this paper, we report a high-throughput efficacy screening platform that we implemented by developing microfluidic components that individually control basic PDT elements (photosensitizer concentrations, oxygen levels, and light fluence) and then integrating them into a single triple-layer device. The integrated microfluidic chip consists of an array of small compartments, each corresponding to a specific combination of these three variables. This allows for more than 1000 different conditions being tested in parallel. Cancer cells are cultured within the device, exposed to different PDT conditions, and then monitored for their viability using live/dead fluorescence staining. The entire screening assay takes only 1 hour, and the collected PDT outcomes (cell viability) for combinatorial screening are analysed and reported as traditional dose-response curves or 3D bubble charts using custom software. As a proof of concept, methylene blue is adopted as a photosensitizer and its drug efficacy on C6 glioma cells has been successfully evaluated for a total of 324 PDT conditions using the fabricated chip. This platform can facilitate not only the development of new photosensitizers but also the optimization of current PDT protocols.


Subject(s)
Microfluidic Analytical Techniques/methods , Oxygen/analysis , Photosensitizing Agents/analysis , Aminolevulinic Acid/analysis , Aminolevulinic Acid/therapeutic use , Aminolevulinic Acid/toxicity , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Glioma/drug therapy , Humans , Light , Microfluidic Analytical Techniques/instrumentation , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
17.
Article in English | MEDLINE | ID: mdl-24339356

ABSTRACT

Imaging has become a cornerstone for medical diagnosis and the guidance of patient management. A new field called image-guided drug delivery (IGDD) now combines the vast potential of the radiological sciences with the delivery of treatment and promises to fulfill the vision of personalized medicine. Whether imaging is used to deliver focused energy to drug-laden particles for enhanced, local drug release around tumors, or it is invoked in the context of nanoparticle-based agents to quantify distinctive biomarkers that could risk stratify patients for improved targeted drug delivery efficiency, the overarching goal of IGDD is to use imaging to maximize effective therapy in diseased tissues and to minimize systemic drug exposure in order to reduce toxicities. Over the last several years, innumerable reports and reviews covering the gamut of IGDD technologies have been published, but inadequate attention has been directed toward identifying and addressing the barriers limiting clinical translation. In this consensus opinion, the opportunities and challenges impacting the clinical realization of IGDD-based personalized medicine were discussed as a panel and recommendations were proffered to accelerate the field forward.


Subject(s)
Drug Delivery Systems , Molecular Imaging , Nanomedicine , Precision Medicine , Animals , Humans , Mice
18.
J Mater Chem B ; 1(41)2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24224083

ABSTRACT

Indocyanine green (ICG) is an optical contrast agent commonly used for a variety of imaging applications. However, certain limitations of the free dye molecule, concerning its low stability, uncontrolled aggregation and lack of targeting ability, have limited its use. Presented here is a method of embedding ICG in a novel polymer/protein hybrid nanocarrier so as to overcome the above inherent drawbacks of the free molecule. The hybrid nanocarrier consists of a non-toxic and biocompatible polyacrylamide nanoparticle (PAA NP) matrix that incorporates human serum albumin (HSA). This nanocarrier was synthesized through pre-conjugation with HSA and amine functionalized monomer, followed by polymerization using biodegradable cross-linkers, in a water-in-oil emulsion. The ICG dye is loaded into the HSA conjugated PAA nanoparticles (HSA-PAA NPs) through post-loading. Compared to the PAA polymer matrix, the presence of hydrophobic pockets in the HSA-PAA NPs further increases the chemical and physical stability of ICG. This is manifested by lowering the chemical degradation rates under physiological conditions, as well as by improving the thermal- and photo-stability of the dye. A targeting moiety, F3-Cys peptide, was attached to the surface of the NPs, for selective delivery to specific cancer cell lines. The suitability of these NPs for optical imaging applications was demonstrated by performing fluorescence imaging on a rat gliosarcoma cell line (9L). We also present the photoacoustic response of the HSA-PAA NPs, used as imaging contrast agents, in the spectral window of 700 nm to 800 nm.

19.
Nanoscale ; 5(21): 10327-44, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24056573

ABSTRACT

Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nanoparticles/chemistry , Peptides/metabolism , Acrylic Resins/chemistry , Amino Acid Sequence , Animals , Anticarcinogenic Agents/pharmacology , Cell Line, Tumor , Chlorpromazine/pharmacology , Cytochalasin D/pharmacology , Endocytosis/drug effects , Genistein/pharmacology , Humans , Lysosomal-Associated Membrane Protein 1/chemistry , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomes/chemistry , Lysosomes/metabolism , Molecular Sequence Data , Peptides/chemistry , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Rats , Surface Properties , Nucleolin
20.
Methods Mol Biol ; 1028: 101-14, 2013.
Article in English | MEDLINE | ID: mdl-23740115

ABSTRACT

Hydrogen peroxide (H2O2) is an important member of the reactive oxygen species, playing various roles in biology and medicine. The conventional detection methods for H2O2 are often restricted by their limited sensitivity, poor selectivity towards H2O2, inappropriate physicochemical properties for detection in biological environments, long response time, etc. We briefly review here some recent nanotechnology--based approaches for H2O2 detection, which present an effective improvement, overcoming some of the limitations of the conventional H2O2 sensing techniques.


Subject(s)
Hydrogen Peroxide/metabolism , Surface Plasmon Resonance , Animals , Biosensing Techniques , Humans , Hydrogen Peroxide/chemistry , Metal Nanoparticles/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...