Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Stem Cell Reports ; 19(2): 187-195, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38242131

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurodegenerative disorder characterized by progressive muscular weakness due to the selective loss of motor neurons. Mutations in the gene Fused in Sarcoma (FUS) were identified as one cause of ALS. Here, we report that mutations in FUS lead to upregulation of synaptic proteins, increasing synaptic activity and abnormal release of vesicles at the synaptic cleft. Consequently, FUS-ALS neurons showed greater vulnerability to glutamate excitotoxicity, which raised neuronal swellings (varicose neurites) and led to neuronal death. Fragile X mental retardation protein (FMRP) is an RNA-binding protein known to regulate synaptic protein translation, and its expression is reduced in the FUS-ALS lines. Collectively, our data suggest that a reduction of FMRP levels alters the synaptic protein dynamics, leading to synaptic dysfunction and glutamate excitotoxicity. Here, we present a mechanistic hypothesis linking dysregulation of peripheral translation with synaptic vulnerability in the pathogenesis of FUS-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Adult , Humans , Amyotrophic Lateral Sclerosis/pathology , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Mutation , Glutamates/metabolism , RNA-Binding Protein FUS/genetics
2.
Brain ; 145(2): 684-699, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34534264

ABSTRACT

Repeat expansions in the C9orf72 gene are a common cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, two devastating neurodegenerative disorders. One of the proposed mechanisms of GGGGCC repeat expansion is their translation into non-canonical dipeptide repeats, which can then accumulate as aggregates and contribute to these pathologies. There are five different dipeptide repeat proteins (polyGA, polyGR, polyPR, polyPA and polyGP), some of which are known to be neurotoxic. In the present study, we used BioID2 proximity labelling to identify the interactomes of all five dipeptide repeat proteins consisting of 125 repeats each. We identified 113 interacting partners for polyGR, 90 for polyGA, 106 for polyPR, 25 for polyPA and 27 for polyGP. Gene Ontology enrichment analysis of the proteomic data revealed that these target interaction partners are involved in a variety of functions, including protein translation, signal transduction pathways, protein catabolic processes, amide metabolic processes and RNA-binding. Using autopsy brain tissue from patients with C9orf72 expansion complemented with cell culture analysis, we evaluated the interactions between polyGA and valosin containing protein (VCP). Functional analysis of this interaction revealed sequestration of VCP with polyGA aggregates, altering levels of soluble valosin-containing protein. VCP also functions in autophagy processes, and consistent with this, we observed altered autophagy in cells expressing polyGA. We also observed altered co-localization of polyGA aggregates and p62 in cells depleted of VCP. All together, these data suggest that sequestration of VCP with polyGA aggregates contributes to the loss of VCP function, and consequently to alterations in autophagy processes in C9orf72 expansion disorders.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion/genetics , Dipeptides/genetics , Frontotemporal Dementia/pathology , Humans , Proteins/genetics , Proteins/metabolism , Proteomics , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
3.
Hum Mol Genet ; 31(2): 166-175, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34378050

ABSTRACT

Transactive response DNA binding protein 43 (TDP-43) is an RNA processing protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Nuclear TDP-43 mislocalizes in patients to the cytoplasm, where it forms ubiquitin-positive inclusions in affected neurons and glia. Physiologically, cytoplasmic TDP-43 is associated with stress granules (SGs). Here, we explored TDP-43 cytoplasmic accumulation and stress granule formation following osmotic and oxidative stress. We show that sorbitol drives TDP-43 redistribution to the cytoplasm, while arsenite induces the recruitment of cytoplasmic TDP-43 to TIA-1 positive SGs. We demonstrate that inducing acute oxidative stress after TDP-43 cytoplasmic relocalization by osmotic shock induces poly (ADP-ribose) polymerase (PARP) cleavage, which triggers cellular toxicity. Recruitment of cytoplasmic TDP-43 to polyribosomes occurs in an SH-SY5Y cellular stress model and is observed in FTD brain lysate. Moreover, the processing body (P-body) marker DCP1a is detected in TDP-43 granules during recovery from stress. Overall, this study supports a central role for cytoplasmic TDP-43 in controlling protein translation in stressed cells.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Humans
4.
Biomedicines ; 9(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070550

ABSTRACT

A hexanucleotide repeat expansion mutation in the first intron of C9orf72 is the most common known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Since the discovery in 2011, numerous pathogenic mechanisms, including both loss and gain of function, have been proposed. The body of work overall suggests that toxic gain of function arising from bidirectionally transcribed repeat RNA is likely to be the primary driver of disease. In this review, we outline the key pathogenic mechanisms that have been proposed to date and discuss some of the novel therapeutic approaches currently in development.

6.
J Cell Sci ; 132(5)2019 03 07.
Article in English | MEDLINE | ID: mdl-30745340

ABSTRACT

The GGGGCC (G4C2) repeat expansion mutation in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Transcription of the repeat and formation of nuclear RNA foci, which sequester specific RNA-binding proteins, is one of the possible pathological mechanisms. Here, we show that (G4C2) n repeat RNA predominantly associates with essential paraspeckle proteins SFPQ, NONO, RBM14, FUS and hnRNPH and colocalizes with known paraspeckle-associated RNA hLinc-p21. As formation of paraspeckles in motor neurons has been associated with early phases of ALS, we investigated the extent of similarity between paraspeckles and (G4C2) n RNA foci. Overexpression of (G4C2)72 RNA results in their increased number and colocalization with SFPQ-stained nuclear bodies. These paraspeckle-like (G4C2)72 RNA foci form independently of the known paraspeckle scaffold, the long non-coding RNA NEAT1 Moreover, the knockdown of SFPQ protein in C9ORF72 expansion mutation-positive fibroblasts significantly reduces the number of (G4C2) n RNA foci. In conclusion, (G4C2) n RNA foci have characteristics of paraspeckles, which suggests that both RNA foci and paraspeckles play roles in FTD and ALS, and implies approaches for regulation of their formation.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Motor Neurons/physiology , Multiprotein Complexes/metabolism , Mutation/genetics , RNA, Nuclear/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/metabolism , Cells, Cultured , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intranuclear Space , Mice , PTB-Associated Splicing Factor/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Nuclear/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Proteins/metabolism , Rats
7.
Brain ; 141(10): 2908-2924, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30239641

ABSTRACT

Accumulation and aggregation of TDP-43 is a major pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 inclusions also characterize patients with GGGGCC (G4C2) hexanucleotide repeat expansion in C9orf72 that causes the most common genetic form of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Functional studies in cell and animal models have identified pathogenic mechanisms including repeat-induced RNA toxicity and accumulation of G4C2-derived dipeptide-repeat proteins. The role of TDP-43 dysfunction in C9ALS/FTD, however, remains elusive. We found G4C2-derived dipeptide-repeat protein but not G4C2-RNA accumulation caused TDP-43 proteinopathy that triggered onset and progression of disease in Drosophila models of C9ALS/FTD. Timing and extent of TDP-43 dysfunction was dependent on levels and identity of dipeptide-repeat proteins produced, with poly-GR causing early and poly-GA/poly-GP causing late onset of disease. Accumulating cytosolic, but not insoluble aggregated TDP-43 caused karyopherin-α2/4 (KPNA2/4) pathology, increased levels of dipeptide-repeat proteins and enhanced G4C2-related toxicity. Comparable KPNA4 pathology was observed in both sporadic frontotemporal dementia and C9ALS/FTD patient brains characterized by its nuclear depletion and cytosolic accumulation, irrespective of TDP-43 or dipeptide-repeat protein aggregates. These findings identify a vicious feedback cycle for dipeptide-repeat protein-mediated TDP-43 and subsequent KPNA pathology, which becomes self-sufficient of the initiating trigger and causes C9-related neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Nerve Degeneration/metabolism , alpha Karyopherins/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA Repeat Expansion , Drosophila , Drosophila Proteins/metabolism , Feedback, Physiological , Frontotemporal Dementia/metabolism , Humans , Nerve Degeneration/pathology
8.
Nat Commun ; 9(1): 347, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367641

ABSTRACT

Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS.


Subject(s)
C9orf72 Protein/genetics , Motor Neurons/pathology , Receptors, AMPA/metabolism , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/metabolism , CRISPR-Cas Systems , Calcium/metabolism , DNA Repeat Expansion , Gene Targeting , Humans , Receptors, AMPA/genetics , Spinal Cord/metabolism , Spinal Cord/physiopathology
9.
Hum Mol Genet ; 26(24): 4765-4777, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28973350

ABSTRACT

An intronic GGGGCC (G4C2) hexanucleotide repeat expansion inC9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 RNA can result in five different dipeptide repeat proteins (DPR: poly GA, poly GP, poly GR, poly PA, and poly PR), which aggregate into neuronal cytoplasmic and nuclear inclusions in affected patients, however their contribution to disease pathogenesis remains controversial. We show that among the DPR proteins, expression of poly GA in a cell culture model activates programmed cell death and TDP-43 cleavage in a dose-dependent manner. Dual expression of poly GA together with other DPRs revealed that poly GP and poly PA are sequestered by poly GA, whereas poly GR and poly PR are rarely co-localised with poly GA. Dual expression of poly GA and poly PA ameliorated poly GA toxicity by inhibiting poly GA aggregation both in vitro and in vivo in the chick embryonic spinal cord. Expression of alternative codon-derived DPRs in chick embryonic spinal cord confirmed in vitro data, revealing that each of the dipeptides caused toxicity, with poly GA being the most toxic. Further, in vivo expression of G4C2 repeats of varying length caused apoptotic cell death, but failed to generate DPRs. Together, these data demonstrate that C9-related toxicity can be mediated by either RNA or DPRs. Moreover, our findings provide evidence that poly GA is a key mediator of cytotoxicity and that cross-talk between DPR proteins likely modifies their pathogenic status in C9ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , C9orf72 Protein/metabolism , Cells, Cultured , Chick Embryo , DNA Repeat Expansion , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dipeptides/genetics , Dipeptides/metabolism , Frontal Lobe/metabolism , Frontal Lobe/physiology , HEK293 Cells , Humans , Intranuclear Inclusion Bodies/metabolism , Neurons/metabolism , Protein Aggregates
10.
Front Cell Neurosci ; 11: 195, 2017.
Article in English | MEDLINE | ID: mdl-28744202

ABSTRACT

A large GGGGCC hexanucleotide repeat expansion in the first intron or promoter region of the C9orf72 gene is the most common genetic cause of familial and sporadic Amyotrophic lateral sclerosis (ALS), a devastating degenerative disease of motor neurons, and of Frontotemporal Dementia (FTD), the second most common form of presenile dementia after Alzheimer's disease. C9orf72-associated ALS/FTD is a multifaceted disease both in terms of its clinical presentation and the misregulated cellular pathways contributing to disease progression. Among the numerous pathways misregulated in C9orf72-associated ALS/FTD, altered RNA processing has consistently appeared at the forefront of C9orf72 research. This includes bidirectional transcription of the repeat sequence, accumulation of repeat RNA into nuclear foci sequestering specific RNA-binding proteins (RBPs) and translation of RNA repeats into dipeptide repeat proteins (DPRs) by repeat-associated non-AUG (RAN)-initiated translation. Over the past few years the true extent of RNA misprocessing in C9orf72-associated ALS/FTD has begun to emerge and disruptions have been identified in almost all aspects of the life of an RNA molecule, including release from RNA polymerase II, translation in the cytoplasm and degradation. Furthermore, several alterations have been identified in the processing of the C9orf72 RNA itself, in terms of its transcription, splicing and localization. This review article aims to consolidate our current knowledge on the consequence of the C9orf72 repeat expansion on RNA processing and draws attention to the mechanisms by which several aspects of C9orf72 molecular pathology converge to perturb every stage of RNA metabolism.

11.
Biochem J ; 473(23): 4271-4288, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27888239

ABSTRACT

RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins.


Subject(s)
DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , DNA Repair/genetics , DNA Repair/physiology , DNA-Binding Proteins/genetics , Humans , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
12.
Acta Neuropathol Commun ; 4: 18, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26916632

ABSTRACT

INTRODUCTION: The most common forms of amyotrophic lateral sclerosis and frontotemporal dementia are caused by a large GGGGCC repeat expansion in the first intron of the C9orf72 gene. The repeat-containing intron should be degraded after being spliced out, however GGGGCC repeat-containing RNA species either accumulate in nuclear foci or are exported to the cytoplasm where they are translated into potentially toxic dipeptide repeat proteins by repeat-associated non-AUG-initiated (RAN) translation. RESULTS: In order to determine the mechanisms of repeat-containing intron misprocessing, we have analyzed C9orf72 transcripts in lymphoblasts from C9orf72 expansion carriers (n = 15) and control individuals (n = 15). We have identified polyadenylated C9orf72 RNA species retaining the repeat-containing intron and in which downstream exons are spliced correctly resulting in a C9orf72 mRNA with an enlarged 5'-UTR containing the GGGGCC repeats. Intron-retaining transcripts are produced from both wild-type and mutant alleles. Intron-retaining C9orf72 transcripts were also detected in brain with a 2.7 fold increase measured in the frontal cortex from heterozygous expansion carriers (n = 11) compared to controls (n = 10). The level of intron-retaining transcripts was increased 5.9 fold in a case homozygous for the expansion. We also show that a large proportion of intron 1-retaining C9orf72 transcripts accumulate in the nucleus. CONCLUSIONS: Retention of the repeat-containing intron in mature C9orf72 mRNA can potentially explain nuclear foci formation as well as nuclear export of GGGGCC repeat RNA and suggests that the misprocessing of C9orf72 transcripts initiates the pathogenic process caused by C9orf72 hexanucleotide repeat expansions as well as provides the basis for novel therapeutic strategies.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Brain/metabolism , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Proteins/genetics , RNA, Messenger/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein , Frontotemporal Dementia/pathology , Humans , Introns/genetics , Models, Molecular
13.
BMC Biol ; 13: 111, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26694817

ABSTRACT

BACKGROUND: SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level. RESULTS: iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3' and 5' untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9-10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion. CONCLUSIONS: iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes.


Subject(s)
CD56 Antigen/genetics , Gene Expression , Glycoproteins/genetics , Matrix Attachment Region Binding Proteins/genetics , Nerve Tissue Proteins/genetics , Nuclear Matrix-Associated Proteins/genetics , RNA Splicing , Receptors, Estrogen/genetics , Alternative Splicing , CD56 Antigen/metabolism , Down-Regulation , Glycoproteins/metabolism , Humans , Matrix Attachment Region Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Receptors, Estrogen/metabolism , Up-Regulation
14.
J Cell Sci ; 128(22): 4151-9, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26403203

ABSTRACT

Aberrant cytoplasmic aggregation of FUS, which is caused by mutations primarily in the C-terminal nuclear localisation signal, is associated with 3% of cases of familial amyotrophic lateral sclerosis (ALS). FUS aggregates are also pathognomonic for 10% of all frontotemporal lobar degeneration (FTLD) cases; however, these cases are not associated with mutations in the gene encoding FUS. This suggests that there are differences in the mechanisms that drive inclusion formation of FUS in ALS and FTLD. Here, we show that the C-terminal tyrosine residue at position 526 of FUS is crucial for normal nuclear import. This tyrosine is subjected to phosphorylation, which reduces interaction with transportin 1 and might consequentially affect the transport of FUS into the nucleus. Furthermore, we show that this phosphorylation can occur through the activity of the Src family of kinases. Our study implicates phosphorylation as an additional mechanism by which nuclear transport of FUS might be regulated and potentially perturbed in ALS and FTLD.


Subject(s)
RNA-Binding Protein FUS/metabolism , Tyrosine/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Lobar Degeneration/metabolism , HeLa Cells , Humans , Molecular Sequence Data , Phosphorylation , Tyrosine/genetics , beta Karyopherins/metabolism
15.
Acta Neuropathol Commun ; 3: 38, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26108573

ABSTRACT

INTRODUCTION: Cytoplasmic TDP-43 inclusions are the pathological hallmark of amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar dementia (FTLD). The G4C2 repeat mutation in C9ORF72 is the most common cause of ALS and FTLD in which, in addition to TDP-43 inclusions, five different di-peptide repeat (DPR) proteins have been identified. Di-peptide repeat proteins are translated in a non-canonical fashion from sense and antisense transcripts of the G4C2 repeat (GP, GA, GR, PA, PR). DPR inclusions are abundant in the cerebellum, as well as in the frontal and temporal lobes of ALS and FTLD patients and some are neurotoxic in a range of cellular and animal models, implying that DPR aggregation directly contributes to disease pathogenesis. Here we sought to quantify inclusions for each DPR and TDP-43 in ALS cases with and without the C9ORF72 mutation. We characterised the abundance of DPRs and their cellular location and compared this to cytoplasmic TDP-43 inclusions in order to explore the role of each inclusion in lower motor neuron degeneration. RESULTS: Spinal cord sections from ten cases positive for the C9ORF72 repeat expansion (ALS-C9+ve) and five cases that were not were probed by double immunofluorescence staining for individual DPRs and TDP-43. Inclusions immunoreactive for each of the DPRs were present in the spinal cord but they were rare or very rare in abundance (in descending order of frequency: GA, GP, GR, PA and PR). TDP-43 cytoplasmic inclusions were 45- to 750-fold more frequent than any DPR, and fewer than 4 % of DPR inclusions colocalized with TDP-43 inclusions. In motor neurons, a single cytoplasmic DPR inclusion was detected (0.1 %) in contrast to the 34 % of motor neurons that contained cytoplasmic TDP-43 inclusions. Furthermore, the number of TDP-43 inclusions in ALS cases with and without the C9ORF72 mutation was nearly identical. CONCLUSIONS: For all other neurodegenerative diseases, the neurotoxic protein aggregates are detected in the affected population of neurons. TDP-43 cytoplasmic aggregation is the dominant feature of ALS spinal cord pathology irrespective of C9ORF72 mutation status. The near absence of DPR inclusions in spinal cord motor neurons challenges their contribution to lower motor neuron degeneration in ALS-C9+ve cases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Dipeptides/genetics , Motor Neurons/metabolism , Proteins/genetics , Spinal Cord/pathology , Adult , Aged , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein , DNA-Binding Proteins/metabolism , Dipeptides/metabolism , Female , Humans , Male , Middle Aged , Motor Neurons/pathology , Spinal Cord/metabolism
17.
PLoS One ; 9(3): e91269, 2014.
Article in English | MEDLINE | ID: mdl-24651281

ABSTRACT

TDP-43 is found in cytoplasmic inclusions in 95% of amyotrophic lateral sclerosis (ALS) and 60% of frontotemporal lobar degeneration (FTLD). Approximately 4% of familial ALS is caused by mutations in TDP-43. The majority of these mutations are found in the glycine-rich domain, including the variant M337V, which is one of the most common mutations in TDP-43. In order to investigate the use of allele-specific RNA interference (RNAi) as a potential therapeutic tool, we designed and screened a set of siRNAs that specifically target TDP-43(M337V) mutation. Two siRNA specifically silenced the M337V mutation in HEK293T cells transfected with GFP-TDP-43(wt) or GFP-TDP-43(M337V) or TDP-43 C-terminal fragments counterparts. C-terminal TDP-43 transfected cells show an increase of cytosolic inclusions, which are decreased after allele-specific siRNA in M337V cells. We then investigated the effects of one of these allele-specific siRNAs in induced pluripotent stem cells (iPSCs) derived from an ALS patient carrying the M337V mutation. These lines showed a two-fold increase in cytosolic TDP-43 compared to the control. Following transfection with the allele-specific siRNA, cytosolic TDP-43 was reduced by 30% compared to cells transfected with a scrambled siRNA. We conclude that RNA interference can be used to selectively target the TDP-43(M337V) allele in mammalian and patient cells, thus demonstrating the potential for using RNA interference as a therapeutic tool for ALS.


Subject(s)
Alleles , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Gene Knockdown Techniques , Induced Pluripotent Stem Cells/pathology , Mutation/genetics , Neural Stem Cells/metabolism , Amino Acid Substitution/genetics , Base Sequence , HEK293 Cells , Humans , Inclusion Bodies/metabolism , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism
18.
J Cell Sci ; 127(Pt 6): 1263-78, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24424030

ABSTRACT

TAR DNA-binding protein (TDP-43, also known as TARDBP) is the major pathological protein in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Large TDP-43 aggregates that are decorated with degradation adaptor proteins are seen in the cytoplasm of remaining neurons in ALS and FTD patients post mortem. TDP-43 accumulation and ALS-linked mutations within degradation pathways implicate failed TDP-43 clearance as a primary disease mechanism. Here, we report the differing roles of the ubiquitin proteasome system (UPS) and autophagy in the clearance of TDP-43. We have investigated the effects of inhibitors of the UPS and autophagy on the degradation, localisation and mobility of soluble and insoluble TDP-43. We find that soluble TDP-43 is degraded primarily by the UPS, whereas the clearance of aggregated TDP-43 requires autophagy. Cellular macroaggregates, which recapitulate many of the pathological features of the aggregates in patients, are reversible when both the UPS and autophagy are functional. Their clearance involves the autophagic removal of oligomeric TDP-43. We speculate that, in addition to an age-related decline in pathway activity, a second hit in either the UPS or the autophagy pathway drives the accumulation of TDP-43 in ALS and FTD. Therapies for clearing excess TDP-43 should therefore target a combination of these pathways.


Subject(s)
Autophagy , DNA-Binding Proteins/metabolism , Proteasome Endopeptidase Complex/physiology , Ubiquitination , Cell Line, Tumor , HEK293 Cells , Humans , Protein Aggregates , Proteolysis , TDP-43 Proteinopathies/metabolism
19.
Cell Rep ; 5(5): 1178-86, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24290757

ABSTRACT

The GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Apoptosis , Frontotemporal Dementia/genetics , Microsatellite Repeats , Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein , Case-Control Studies , Cell Line, Tumor , Female , Frontotemporal Dementia/metabolism , Humans , Male , Middle Aged , Protein Binding , Proteins/genetics , RNA Splicing , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Rats , Zebrafish
20.
Eur J Neurosci ; 36(7): 2941-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22845676

ABSTRACT

Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex.The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory.


Subject(s)
Cerebral Cortex/physiology , Gene Expression Regulation , Long-Term Potentiation/genetics , Memory, Short-Term/physiology , MicroRNAs/metabolism , Recognition, Psychology/physiology , Animals , Cerebral Cortex/metabolism , Excitatory Postsynaptic Potentials , HeLa Cells , Humans , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Male , MicroRNAs/genetics , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...