Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(7): 6781-6788, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36989457

ABSTRACT

This paper describes an approach to generate hierarchical wrinkles in two-dimensional (2D) electronic materials with spatial control over adjacent wavelengths. A rigid fluoropolymer mold was used to pattern a sacrificial polymer skin layer on monolayer graphene, molybdenum disulfide, and hexagonal boron nitride on prestrained thermoplastic sheets. Strain relief and removal of the polymer layer resulted in 2D-material wrinkles whose wavelengths scaled linearly with the local skin thickness. A second generation of wrinkles could be created on top of the first generation by applying a subsequent cycle of polymer skin coating, strain relief, and polymer removal. This area-specific hierarchical wrinkling is general and will facilitate the engineering of the local properties of various 2D materials and their heterostructures.

2.
Small ; 18(1): e2103865, 2022 01.
Article in English | MEDLINE | ID: mdl-34755454

ABSTRACT

This paper describes a self-regulating system that combines wrinkle-patterned hydrogels with plasmonic nanoparticle (NP) lattices. In the feedback loop, the wrinkle patterns flatten in response to moisture, which then allows light to reach the NP lattice on the bottom layer. Upon light absorption, the NP lattice produces a photothermal effect that dries the hydrogel, and the system then returns to the initial wrinkled configuration. The timescale of this regulatory cycle can be programmed by tuning the degree of photothermal heating by NP size and substrate material. Time-dependent finite element analysis reveals the thermal and mechanical mechanisms of wrinkle formation. This self-regulating system couples morphological, optical, and thermo-mechanical properties of different materials components and offers promising design principles for future smart systems.


Subject(s)
Nanoparticles , Self-Control , Skin Aging , Hydrogels
3.
Adv Healthc Mater ; 9(16): e2000536, 2020 08.
Article in English | MEDLINE | ID: mdl-32597571

ABSTRACT

Targeting areas of inflammation offers potential therapeutic and diagnostic benefits by maximizing drug and imaging marker on-target effects while minimizing systemic exposure that can be associated with adverse side effects. This strategy is particularly beneficial in the management of inflammatory bowel disease (IBD). Here an inflammation-targeting (IT) approach based on heparin-coated human serum albumin nanoparticles (HEP-HSA NPs) that utilize the increased intestinal permeability and changes in electrostatic interaction at the site of intestinal inflammation is described. Using small-molecule and biologic drugs as a model for drug combination, the HEP-HSA NPs demonstrate the capacity to load both drugs simultaneously; the dual-drug loaded HEP-HSA NPs exhibit a higher anti-inflammatory effect than both of the single-drug loaded NPs in vitro and selectively bind to inflamed intestine after enema administration in vivo in a murine model of colitis. Importantly, analyses of the physicochemical characteristics and targeting capacities of these NPs indicate that HEP coating modulates NP binding to the inflamed intestine, providing a foundation for future IT-NP formulation development.


Subject(s)
Drug Delivery Systems , Nanoparticles , Animals , Drug Carriers , Drug Combinations , Heparin , Humans , Intestines , Mice
4.
Nat Biomed Eng ; 4(5): 544-559, 2020 05.
Article in English | MEDLINE | ID: mdl-32341538

ABSTRACT

Monolayers of cancer-derived cell lines are widely used in the modelling of the gastrointestinal (GI) absorption of drugs and in oral drug development. However, they do not generally predict drug absorption in vivo. Here, we report a robotically handled system that uses large porcine GI tissue explants that are functionally maintained for an extended period in culture for the high-throughput interrogation (several thousand samples per day) of whole segments of the GI tract. The automated culture system provided higher predictability of drug absorption in the human GI tract than a Caco-2 Transwell system (Spearman's correlation coefficients of 0.906 and 0.302, respectively). By using the culture system to analyse the intestinal absorption of 2,930 formulations of the peptide drug oxytocin, we discovered an absorption enhancer that resulted in a 11.3-fold increase in the oral bioavailability of oxytocin in pigs in the absence of cellular disruption of the intestinal tissue. The robotically handled whole-tissue culture system should help advance the development of oral drug formulations and might also be useful for drug screening applications.


Subject(s)
Drug Compounding , Drug Evaluation, Preclinical , Robotics , Tissue Culture Techniques/methods , Administration, Oral , Animals , Biological Transport/drug effects , Caco-2 Cells , Humans , Intestinal Absorption , Jejunum/physiology , Oxytocin/administration & dosage , Oxytocin/pharmacokinetics , Oxytocin/pharmacology , Permeability , Reproducibility of Results , Swine , User-Computer Interface
5.
Nano Lett ; 20(2): 1433-1439, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31927935

ABSTRACT

This paper describes an all-soft, templated assembly of block copolymers (BCPs) with programmable alignment. Using polymeric nanowrinkles as a confining scaffold, poly(styrene)-block-poly(dimethylsiloxane) (PS-b-PDMS) BCPs were assembled to be parallel or perpendicular to the wrinkle orientation by manipulating the substrate strain. Self-consistent field theory modeling revealed that wrinkle curvature and surface affinity govern the BCP structural formation. Furthermore, control of BCP alignment was demonstrated for complex wrinkle geometries, various copolymer molecular weights, and functional wrinkle skin layers. This integration of BCP patterning with flexible 3D architectures offers a promising nanolithography approach for next-generation soft electronics.

6.
Sci Rep ; 8(1): 11816, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30087406

ABSTRACT

Gastric resident dosage forms have been used successfully in farm animals for the delivery of a variety of drugs helping address the challenge of extended dosing. Despite these advances, there remains a significant challenge across the range of species with large variation in body size. To address this, we investigate a scalable gastric resident platform capable of prolonged retention. We investigate prototypes in dimensions consistent with administration and retention in the stomachs of two species (rabbit and pig). We investigate sustained gastric retention of our scalable dosage form platform, and in pigs show the capacity to modulate drug release kinetics of a model drug in veterinary practice, meloxicam, with our dosage form. The ability to achieve gastric residence and thereby enable sustained drug levels across different species may have a significant impact in the welfare of animals in both research, agricultural, zoological, and clinical practice settings.


Subject(s)
Delayed-Action Preparations/administration & dosage , Drug Delivery Systems/methods , Gastrointestinal Tract/metabolism , Meloxicam/administration & dosage , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Delayed-Action Preparations/pharmacokinetics , Drug Liberation , Female , Kinetics , Meloxicam/pharmacokinetics , Rabbits , Swine , Veterinary Medicine/methods
7.
Adv Mater ; 30(32): e1706657, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29952092

ABSTRACT

This paper describes polymeric nanostructures with dynamically tunable wetting properties. Centimeter-scale areas of monolithic nanoridges can be generated by strain relief of thermoplastic polyolefin films with fluoropolymer skin layers. Changing the amount of strain results in polyolefin ridges with aspect ratios greater than four with controlled feature densities. Surface chemistry and topography are demonstrated to be able to be tailored by SF6 -plasma etching to access multiple wetting states: Wenzel, Cassie-Baxter, and Cassie-impregnating states. Reversible transitions among the wetting states can be realized in a programmable manner by cyclic stretching and reshrinking the patterned substrates without delamination and cracking.

8.
Biomaterials ; 170: 127-135, 2018 07.
Article in English | MEDLINE | ID: mdl-29660635

ABSTRACT

Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices.


Subject(s)
Caffeine/pharmacology , Gels/chemistry , Animals , Caffeine/chemistry , Catalysis , Cell Line , Compressive Strength , Drug Liberation , Female , Humans , Kinetics , Rats, Sprague-Dawley , Tensile Strength , Water/chemistry
9.
Nat Commun ; 9(1): 2, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317618

ABSTRACT

The efficacy of antiretroviral therapy is significantly compromised by medication non-adherence. Long-acting enteral systems that can ease the burden of daily adherence have not yet been developed. Here we describe an oral dosage form composed of distinct drug-polymer matrices which achieved week-long systemic drug levels of the antiretrovirals dolutegravir, rilpivirine and cabotegravir in a pig. Simulations of viral dynamics and patient adherence patterns indicate that such systems would significantly reduce therapeutic failures and epidemiological modelling suggests that using such an intervention prophylactically could avert hundreds of thousands of new HIV cases. In sum, weekly administration of long-acting antiretrovirals via a novel oral dosage form is a promising intervention to help control the HIV epidemic worldwide.


Subject(s)
Anti-HIV Agents/administration & dosage , Drug Delivery Systems/methods , Heterocyclic Compounds, 3-Ring/administration & dosage , Pyridones/administration & dosage , Rilpivirine/administration & dosage , Administration, Oral , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use , Drug Evaluation, Preclinical , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Models, Theoretical , Oxazines , Patient Compliance , Piperazines , Proof of Concept Study , Pyridones/pharmacokinetics , Pyridones/therapeutic use , Rilpivirine/pharmacokinetics , Rilpivirine/therapeutic use , Swine
10.
J Control Release ; 268: 113-119, 2017 Dec 28.
Article in English | MEDLINE | ID: mdl-29051063

ABSTRACT

Ultrasound-mediated drug delivery in the gastrointestinal (GI) tract is a bourgeoning area of study. Localized, low-frequency ultrasound has recently been shown to enable significant enhancement in delivery of a broad set of active pharmaceutical ingredients including small molecules, proteins, and nucleic acids without any formulation or encapsulation of the therapeutic. Traditional chemical formulations are typically required to protect, stabilize, and enable the successful delivery of a given therapeutic. The use of ultrasound, however, may make delivery insensitive to the chemical formulation. This might open the door to chemical formulations being developed to address other properties besides the deliverability of a therapeutic. Instead, chemical formulations could potentially be developed to achieve novel pharmacokinetics, without consideration of that particular formulation's ability to penetrate the mucus barrier passively. Here we investigated the effect of permeant size, charge, and the presence of chemical penetration enhancers on delivery to GI tissue using ultrasound. Short ultrasound treatments enabled delivery of large permeants, including microparticles, deep into colonic tissue ex vivo. Delivery was relatively independent of size and charge but did depend on conformation, with regular, spherical particles being delivered to a greater extent than long-chain polymers. The subsequent residence time of model permeants in tissue after ultrasound-mediated delivery was found to depend on size, with large microparticles demonstrating negligible clearance from the local tissue 24h after delivery ex vivo. The dependence of clearance time on permeant size was further confirmed in vivo in mice using fluorescently labeled 3kDa and 70kDa dextran. The use of low-frequency ultrasound in the GI tract represents a novel tool for the delivery of a wide-range of therapeutics independent of formulation, potentially allowing for the tailoring of formulations to impart novel pharmacokinetic profiles once delivered into tissue.


Subject(s)
Colon/metabolism , Drug Delivery Systems , Ultrasonic Waves , Animals , Colon/ultrastructure , Dextrans/administration & dosage , Female , Intestinal Absorption , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron, Scanning , Microspheres , Permeability , Swine
11.
Sci Transl Med ; 8(365): 365ra157, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27856796

ABSTRACT

Efforts at elimination of scourges, such as malaria, are limited by the logistic challenges of reaching large rural populations and ensuring patient adherence to adequate pharmacologic treatment. We have developed an oral, ultra-long-acting capsule that dissolves in the stomach and deploys a star-shaped dosage form that releases drug while assuming a geometry that prevents passage through the pylorus yet allows passage of food, enabling prolonged gastric residence. This gastric-resident, drug delivery dosage form releases small-molecule drugs for days to weeks and potentially longer. Upon dissolution of the macrostructure, the components can safely pass through the gastrointestinal tract. Clinical, radiographic, and endoscopic evaluation of a swine large-animal model that received these dosage forms showed no evidence of gastrointestinal obstruction or mucosal injury. We generated long-acting formulations for controlled release of ivermectin, a drug that targets malaria-transmitting mosquitoes, in the gastric environment and incorporated these into our dosage form, which then delivered a sustained therapeutic dose of ivermectin for up to 14 days in our swine model. Further, by using mathematical models of malaria transmission that incorporate the lethal effect of ivermectin against malaria-transmitting mosquitoes, we demonstrated that this system will boost the efficacy of mass drug administration toward malaria elimination goals. Encapsulated, gastric-resident dosage forms for ultra-long-acting drug delivery have the potential to revolutionize treatment options for malaria and other diseases that affect large populations around the globe for which treatment adherence is essential for efficacy.


Subject(s)
Antimalarials/administration & dosage , Drug Delivery Systems , Ivermectin/administration & dosage , Malaria/drug therapy , Stomach/drug effects , Administration, Oral , Animals , Capsules , Culicidae , Delayed-Action Preparations , Drug Liberation , Endoscopy , Finite Element Analysis , Humans , Malaria/transmission , Models, Theoretical , Polymers/chemistry , Swine
12.
Adv Healthc Mater ; 5(10): 1141-6, 2016 05.
Article in English | MEDLINE | ID: mdl-27060695

ABSTRACT

A novel Janus device with omniphobic and mucoadhesive sides that exhibit the unique capacity for antifouling and extended gastrointestinal retention is fabricated. This system enables repulsion of the food and fluid stream by the luminal-facing omniphobic side and allows attachment to the gastrointestinal mucosa by the mucoadhesive side.


Subject(s)
Adhesives/metabolism , Gastrointestinal Tract/metabolism , Mucous Membrane/metabolism , Animals , Drug Delivery Systems/methods , Humans , Swine , Water/metabolism
13.
Nat Mater ; 14(10): 1065-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26213897

ABSTRACT

Devices resident in the stomach-used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery-typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.


Subject(s)
Drug Delivery Systems , Elastomers , Polymers/chemistry , Stomach/drug effects , Animals , Electronics , Esophagus/drug effects , Gastrointestinal Transit/physiology , Gels/chemistry , Humans , Hydrogen-Ion Concentration , Swine , Tablets , Technology, Pharmaceutical
SELECTION OF CITATIONS
SEARCH DETAIL
...