Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10198, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702324

ABSTRACT

The absorption of electromagnetic waves in a broadband frequency range with polarization insensitivity and incidence-angle independence is greatly needed in modern technology applications. Many structures based on metamaterials have been suggested for addressing these requirements; these structures were complex multilayer structures or used special materials or external electric components, such as resistive ones. In this paper, we present a metasurface structure that was fabricated simply by employing the standard printed-circuit-board technique but provides a high absorption above 90% in a broadband frequency range from 12.35 to 14.65 GHz. The metasurface consisted of structural unit cells of 4 symmetric substructures assembled with a metallic bar pattern, which induced broadband absorption by using a planar resistive interaction in the pattern without a real resistive component. The analysis, simulation, and measurement results showed that the metasurface was also polarization insensitive and still maintained an absorption above 90% at incident angles up to 45°. The suggested metasurface plays a role in the fundamental design and can also be used to design absorbers at different frequency ranges. Furthermore, further enhancement of the absorption performance is achieved by improved design and fabrication.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36770343

ABSTRACT

It is of great technological importance in the field of plasmonic color generation to establish and understand the relationship between optical responses and the reflectance of metallic nanoparticles. Previously, a series of indium nanoparticle ensembles were fabricated using electron beam evaporation and inspected using spectroscopic ellipsometry (SE). The multi-oscillator Lorentz-Drude model demonstrated the optical responses of indium nanoparticles with different sizes and size distributions. The reflectance spectra and colorimetry characteristics of indium nanoparticles with unimodal and bimodal size distributions were interpreted based on the SE analysis. The trends of reflectance spectra were explained by the transfer matrix method. The effects of optical constants n and k of indium on the reflectance were demonstrated by mapping the reflectance contour lines on the n-k plane. Using oscillator decomposition, the influence of different electron behaviors in various indium structures on the reflectance spectra was revealed intuitively. The contribution of each oscillator on the colorimetry characteristics, including hue, lightness and saturation, were determined and discussed from the reflectance spectral analysis.

3.
Appl Opt ; 60(6): 1609-1614, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33690496

ABSTRACT

We propose an accurate and rapid azimuth calibration method for polarizing elements in ellipsometry. Over 200 calibrations were achieved simultaneously at different wavelength points in a spectral range of 550-650 nm without any calibrated element. The azimuth of the polarizer was determined from the differential spectral analysis on the ellipse azimuth of reflected light. The information of the ellipse azimuth is experimentally acquired in the spectral range by a rotating polarizing element and a spectrometer. The presented method was performed and verified with Si and Au bulk, respectively, showing reliability and feasibility for efficient and reliable calibration in ellipsometry.

4.
Sci Rep ; 11(1): 1093, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33441851

ABSTRACT

Unlike the single grating Czerny-Turner configuration spectrometers, a super-high spectral resolution optical spectrometer with zero coma aberration is first experimentally demonstrated by using a compound integrated diffraction grating module consisting of 44 high dispersion sub-gratings and a two-dimensional backside-illuminated charge-coupled device array photodetector. The demonstrated super-high resolution spectrometer gives 0.005 nm (5 pm) spectral resolution in ultra-violet range and 0.01 nm spectral resolution in the visible range, as well as a uniform efficiency of diffraction in a broad 200 nm to 1000 nm wavelength region. Our new zero-off-axis spectrometer configuration has the unique merit that enables it to be used for a wide range of spectral sensing and measurement applications.

5.
Opt Express ; 27(21): 30589-30596, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684303

ABSTRACT

In this work, we design a structure of metamaterials that consists of double sliver-ring resonators, in which highly-dispersive unidirectional reflectionlessness and absorption are achieved based on high-order plasmon resonance. Reflections of +z and -z directions at 461.34 THz (456.68 THz) are ∼0 (0.82) and ∼0.85 (0) when the distance d=222.9 nm (259.8 nm), respectively. High absorption of ∼0.97 and the quality factor of ∼435 can be obtained in the loss metal structure at room temperature. What's more, unidirectional reflectionlessness is investigated at low temperature.

6.
Sci Rep ; 9(1): 12434, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31455835

ABSTRACT

In this work, the two-dimensional profile of the light transmission through a prism-like metallic film sample of Au was measured at a wavelength of 632.8 nm in the visible intraband transition region to verify that, beyond the possible mechanisms of overcoming the diffraction limit, a strongly nonuniform optical absorption path length of the light traveling in the metal could induce a lensing effect, thereby narrowing the image of an object. A set of prism-like Au samples with different angles was prepared and experimentally investigated. Due to the nonuniform paths of the light traveling in the Au samples, lens-effect-like phenomena were clearly observed that reduced the imaged size of the beam spot with decreasing light intensity. The experimental measurements presented in the work may provide new insight to better understand the light propagation behavior at a metal/dielectric interface.

7.
Sci Rep ; 9(1): 10211, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31308474

ABSTRACT

Optical spectrometers play a key role in acquiring rich photonic information in both scientific research and a wide variety of applications. In this work, we present a new spectrometer with an ultrahigh resolution of better than 0.012 nm/pixel in the 170-600 nm spectral region using a grating-integrated module that consists of 19 subgratings without any moving parts. By using two-dimensional (2D) backsideilluminated complementary metal-oxide-semiconductor (BSI-CMOS) array detector technology with 2048 × 2048 pixels, a high data acquisition speed of approximately 25 spectra per second is achieved. The physical photon-sensing size of the detector along the one-dimensional wavelength direction is enhanced by a factor of 19 to approximately 428 mm, or 38912 pixels, to satisfy the requirement of seamless connection between two neighboring subspectral regions without any missing wavelengths throughout the entire spectral region. As tested with a mercury lamp, the system has advanced performance capabilities characterized by the highest k parameter reported to date, being approximately 3.58 × 104, where k = (working wavelength region)/(pixel resolution). Data calibration and analysis as well as a method of reducing background noise more efficiently are also discussed. The results presented in this work will stimulate further research on precision spectrometers based on advanced BSI-CMOS array detectors in the future.

8.
Nanotechnology ; 30(4): 045205, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30499459

ABSTRACT

Dual-band unidirectional reflectionlessness at exceptional points is investigated theoretically in a non-Hermitian plasmonic waveguide system, based on near-field coupling by using only two resonators. The system consists of a metal-insulator-metal waveguide end-coupled to two nanohole resonators. The reflectivity for the forward (backward) direction is ∼0 (∼0) at frequency 205.20 THz (194.56 THz), while for the backward (forward) direction it is ∼0.76 (∼0.78). Moreover, the quality factors of the dual-band unidirectional reflectionlessness for forward and backward directions can reach ∼132 and ∼137, respectively.

9.
Materials (Basel) ; 11(12)2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30469539

ABSTRACT

Dual-band unidirectional reflectionless propagation at two exceptional points is investigated in metamaterial, which is composed of only two gold resonators with circular holes, by simply manipulating the angle of incident wave and distance between two resonators. Furthermore, the dual-band unidirectional reflectionless propagation can be realized in the wide ranges of incident angle from 0 ∘ to 50 ∘ and distance from 255 nm to 355 nm between two resonators. In addition, our scheme is insensitive to polarization of incident wave due to the circular-hole structure of the resonators.

10.
Sci Rep ; 8(1): 11632, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072795

ABSTRACT

An integrated model utilizing external parasitic capacitors for a dual-band metamaterial perfect absorber (DMPA) is proposed and demonstrated in the UHF radio band. By adjusting the lumped capacitors on a simple meta-surface, the thickness of absorber is reduced to be only 1/378 and 1/320 with respect to the operating wavelength at 305 and 360.5 MHz, respectively. The simulations and the experiments confirm that the DMPA can maintain an absorption over 91% in a wide range of incident angle (up to 55°) and independent of the polarization of incident radiation. Additionally, we examine the integrated model for smaller dual-band absorber and absorption performance at higher frequencies (LTE band). Finally, we consolidate our approach by fabricating an ultrathin triple-band perfect absorber miniaturized to be only 1/591 of the longest operating wavelength. Our work is expected to contribute to the actualization of metamaterial-based devices working at radio frequency.

11.
Sci Rep ; 8(1): 12660, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30139954

ABSTRACT

Optical spectrometers play an important role in modern scientific research. In this work, we present a two-channel spectrometer with a pixel resolution of better than 0.1 nm/pixel in the wavelength range of 200 to 950 nm and an acquisition speed of approximately 25 spectra per second. The spectrometer reaches a high k factor which characterizes the spectral performance of the spectrometer as k = (working wavelength region)/(pixel resolution) = 7500. Instead of using mechanical moving parts in traditional designs, the spectrometer consists of 8 integrated sub-gratings for diffracting and imaging two sets of 4-folded spectra on the upper and lower parts, respectively, of the focal plane of a two-dimensional backside-illuminated complementary metal-oxide-semiconductor (BSI-CMOS) array detector, which shows a high peak quantum efficiency of approximately 90% at 400 nm. In addition to the advantage of being cost-effective, the compact design of the spectrometer makes it advantageous for applications in which it is desirable to use the same two-dimensional array detector to simultaneously measure multiple spectra under precisely the same working conditions to reduce environmental effects. The performance of the finished spectrometer is tested and confirmed with an Hg-Ar lamp.

12.
Opt Express ; 26(4): 3839-3849, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475362

ABSTRACT

Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.

13.
Opt Express ; 25(20): 24281-24289, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041373

ABSTRACT

Dual-band unidirectional reflectionlessness and coherent perfect absorption (CPA) are demonstrated in a non-Hermitian plasmonic waveguide system based on near-field coupling between a single resonator and the resonant modes of two resonators showing an electromagnetically induced-transparency-like (EIT-like) effect. The non-Hermitian plasmonic system consists of three metal-insulator-metal (MIM) resonators coupled to a MIM plasmonic waveguide.

14.
Sci Rep ; 7(1): 10742, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878241

ABSTRACT

An effective scheme on switching the exceptional point(EP) where unidirectional reflectionlessness occurs is firstly proposed in non-ideal PT metamaterial via the polarization of incident light. The unidirectional reflectionlessness could be effectively controlled only by adjusting the phase coupling of the two resonators which are consisted of two identical but vertically placed crosses and are excited by incident light as an effective gain. Besides, the unidirectional perfect absorber occurs in the vicinity of EP.

15.
Sci Rep ; 7(1): 11507, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912553

ABSTRACT

We numerically and experimentally investigated a dual-band metamaterial perfect absorber (MPA), utilizing the near-field coupling of double split-ring resonators (DSRRs). Owing to the near-field coupling between resonators, two arms in each DSRR resonate in different phases, leading to a dual-band perfect absorption. The proposed MPA also exhibits polarization-insensitive behavior and maintains the high absorption above 90% up to a wide range of incident angle more than 45°. Finally, to further consolidate our approach, a multi-band absorption is also studied by exploiting the near-field coupling among a larger number of DSRRs. Our work is expected to be applied to future broadband devices using MPA.

16.
Sci Rep ; 7: 45151, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28327658

ABSTRACT

An efficient resolution for ultrathin metamaterial perfect absorber (MPA) is proposed and demonstrated in the VHF radio band (30-300 MHz). By adjusting the lumped capacitors and the through vertical interconnects, the absorber is miniaturized to be only λ/816 and λ/84 for its thickness and periodicity with respect to the operating wavelength (at 102 MHz), respectively. The detailed simulation and calculation show that the MPA can maintain an absorption rate over 90% in a certain range of incident angle and with a wide variation of capacitance. Additionally, we utilized the advantages of the initial single-band structure to realize a nearly perfect dual-band absorber in the same range. The results were confirmed by both simulation and experiment at oblique incidence angles up to 50°. Our work is expected to contribute to the actualization of future metamaterial-based devices working at radio frequency.

17.
Sci Rep ; 7: 44614, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28300178

ABSTRACT

In this work, 4-layered SiO2/Bi2Te3/SiO2/Cu film structures were designed and fabricated and the optical properties investigated in the wavelength region of 250-1200 nm for their promising applications for direct solar-thermal-electric conversion. A typical 4-layered film sample with the structure SiO2 (66.6 nm)/Bi2Te3 (7.0 nm)/SiO2 (67.0 nm)/Cu (>100.0 nm) was deposited on a Si or K9-glass substrate by magnetron sputtering. The experimental results agree well with the simulated ones showing an average optical absorption of 96.5%, except in the shorter wavelength region, 250-500 nm, which demonstrates the superior absorption property of the 4-layered film due to the randomly rough surface of the Cu layer resulting from the higher deposition power. The high reflectance of the film structure in the long wavelength region of 2-20 µm will result in a low thermal emittance, 0.064 at 600 K. The simpler 4-layered structure with the thermoelectric Bi2Te3 used as the absorption layer may provide a straightforward way to obtain solar-thermal-electric conversion more efficiently through future study.

18.
Sci Rep ; 6: 33416, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27629804

ABSTRACT

We realized the tunable metamaterial hyper-transmitter in the microwave range utilizing simple planar meta-structure. The single-layer metamaterial hyper-transmitter shows that the transmission peak occurs at 14 GHz. In case of the dual-layer one, it is possible to control the transmission peak from 5 to 10 GHz. Moreover, all the transmission peaks reveal transmission over 100%. We experimentally and theoretically investigated these phenomena through 3-dimensional simulation and measurement. The reason for being over 100% is also elucidated. The suggested hyper-transmitter can be used, for example, in enhancing the operating distance of the electromagnetic wave in Wi-Fi, military radar, wireless power transfer and self-driving car.

19.
Sci Rep ; 6: 32123, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27555217

ABSTRACT

From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes.


Subject(s)
Proteins/analysis , Terahertz Spectroscopy/methods , Benzothiazoles/analysis , Carbocyanines/analysis , Rhodamines/analysis , Serum Albumin, Bovine/analysis , Silicon/chemistry , Silver/chemistry , Terahertz Spectroscopy/instrumentation , Vibration
20.
Sci Rep ; 5: 14018, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26354891

ABSTRACT

Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...