Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766244

ABSTRACT

The ongoing emergence of SARS-CoV-2 variants of concern (VOCs) that reduce the effectiveness of antibody therapeutics necessitates development of next-generation antibody modalities that are resilient to viral evolution. Here, we characterized N-terminal domain (NTD) and receptor binding domain (RBD)-specific monoclonal antibodies previously isolated from COVID-19 convalescent donors for their activity against emergent SARS-CoV-2 VOCs. Among these, the NTD-specific antibody C1596 displayed the greatest breadth of binding to VOCs, with cryo-EM structural analysis revealing recognition of a distinct NTD epitope outside of the site i antigenic supersite. Given C1596's favorable binding profile, we designed a series of bispecific antibodies (bsAbs) termed CoV2-biRNs, that featured both NTD and RBD specificities. Notably, two of the C1596-inclusive bsAbs, CoV2-biRN5 and CoV2-biRN7, retained potent in vitro neutralization activity against all Omicron variants tested, including XBB.1.5, EG.5.1, and BA.2.86, contrasting the diminished potency of parental antibodies delivered as monotherapies or as a cocktail. Furthermore, prophylactic delivery of CoV2-biRN5 significantly reduced the viral load within the lungs of K18-hACE2 mice following challenge with SARS-CoV-2 XBB.1.5. In conclusion, our NTD-RBD bsAbs offer promising potential for the design of resilient, next-generation antibody therapeutics against SARS-CoV-2 VOCs.

2.
Cell Rep ; 43(6): 114298, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38819991

ABSTRACT

Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito-borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.

4.
Immunity ; 55(12): 2419-2435.e10, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36370711

ABSTRACT

Increased immune evasion by SARS-CoV-2 variants of concern highlights the need for new therapeutic neutralizing antibodies. Immunization with nanoparticles co-displaying spike receptor-binding domains (RBDs) from eight sarbecoviruses (mosaic-8 RBD-nanoparticles) efficiently elicits cross-reactive polyclonal antibodies against conserved sarbecovirus RBD epitopes. Here, we identified monoclonal antibodies (mAbs) capable of cross-reactive binding and neutralization of animal sarbecoviruses and SARS-CoV-2 variants by screening single mouse B cells secreting IgGs that bind two or more sarbecovirus RBDs. Single-particle cryo-EM structures of antibody-spike complexes, including a Fab-Omicron complex, mapped neutralizing mAbs to conserved class 1/4 RBD epitopes. Structural analyses revealed neutralization mechanisms, potentials for intra-spike trimer cross-linking by IgGs, and induced changes in trimer upon Fab binding. In addition, we identified a mAb-resembling Bebtelovimab, an EUA-approved human class 3 anti-RBD mAb. These results support using mosaic RBD-nanoparticle vaccination to generate and identify therapeutic pan-sarbecovirus and pan-variant mAbs.


Subject(s)
COVID-19 , Nanoparticles , Severe acute respiratory syndrome-related coronavirus , Mice , Animals , Humans , SARS-CoV-2 , Epitopes , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal , Neutralization Tests , Antibodies, Viral , Antibodies, Neutralizing
5.
Science ; 377(6606): eabq0839, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35857620

ABSTRACT

To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Betacoronavirus , Coronavirus Infections , Epitopes , Nanoparticles , Spike Glycoprotein, Coronavirus , Zoonoses , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Epitopes/therapeutic use , Macaca , Mice , Nanoparticles/therapeutic use , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Zoonoses/prevention & control , Zoonoses/virology
6.
Immunity ; 55(6): 998-1012.e8, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35447092

ABSTRACT

SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor-binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for antibodies. Here, we use NTD-specific probes to capture anti-NTD memory B cells in a longitudinal cohort of infected individuals, some of whom were vaccinated. We found 6 complementation groups of neutralizing antibodies. 58% targeted epitopes outside the NTD supersite, 58% neutralized either Gamma or Omicron, and 14% were broad neutralizers that also neutralized Omicron. Structural characterization revealed that broadly active antibodies targeted three epitopes outside the NTD supersite including a class that recognized both the NTD and SD2 domain. Rapid recruitment of memory B cells producing these antibodies into the plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants, including Omicron.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Memory B Cells , SARS-CoV-2
7.
bioRxiv ; 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35378752

ABSTRACT

To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against conserved/relatively-occluded, rather than variable/immunodominant/exposed, epitopes. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicron and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.

8.
bioRxiv ; 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35132412

ABSTRACT

SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for the antibody system. Neutralizing antibodies targeting the RBD bind to several different sites on this domain. In contrast, most neutralizing antibodies to NTD characterized to date bind to a single supersite, however these antibodies were obtained by methods that were not NTD specific. Here we use NTD specific probes to focus on anti-NTD memory B cells in a cohort of pre-omicron infected individuals some of which were also vaccinated. Of 275 NTD binding antibodies tested 103 neutralized at least one of three tested strains: Wuhan-Hu-1, Gamma, or PMS20, a synthetic variant which is extensively mutated in the NTD supersite. Among the 43 neutralizing antibodies that were further characterized, we found 6 complementation groups based on competition binding experiments. 58% targeted epitopes outside the NTD supersite, and 58% neutralized either Gamma or Omicron, but only 14% were broad neutralizers. Three of the broad neutralizers were characterized structurally. C1520 and C1791 recognize epitopes on opposite faces of the NTD with a distinct binding pose relative to previously described antibodies allowing for greater potency and cross-reactivity with 7 different variants including Beta, Delta, Gamma and Omicron. Antibody C1717 represents a previously uncharacterized class of NTD-directed antibodies that recognizes the viral membrane proximal side of the NTD and SD2 domain, leading to cross-neutralization of Beta, Gamma and Omicron. We conclude SARS-CoV-2 infection and/or Wuhan-Hu-1 mRNA vaccination produces a diverse collection of memory B cells that produce anti-NTD antibodies some of which can neutralize variants of concern. Rapid recruitment of these cells into the antibody secreting plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants including omicron.

10.
NPJ Vaccines ; 6(1): 126, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34697307

ABSTRACT

HIV-1 vaccine design aims to develop an immunogen that elicits broadly neutralizing antibodies against a desired epitope, while eliminating responses to off-target regions of HIV-1 Env. We report characterization of Ab1245, an off-target antibody against the Env gp120-gp41 interface, from V3-glycan patch immunogen-primed and boosted macaques. A 3.7 Å cryo-EM structure of an Ab1245-Env complex reveals one Ab1245 Fab binding asymmetrically to Env trimer at the gp120-gp41 interface using its long CDRH3 to mimic regions of gp41. The mimicry includes positioning of a CDRH3 methionine into the gp41 tryptophan clasp, resulting in displacement of the fusion peptide and fusion peptide-proximal region. Despite fusion peptide displacement, Ab1245 is non-neutralizing even at high concentrations, raising the possibility that only two fusion peptides per trimer are required for viral-host membrane fusion. These structural analyses facilitate immunogen design to prevent elicitation of Ab1245-like antibodies that block neutralizing antibodies against the fusion peptide.

11.
Cell Rep ; 36(13): 109760, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34534459

ABSTRACT

Many anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) neutralizing antibodies target the angiotensin-converting enzyme 2 (ACE2) binding site on viral spike receptor-binding domains (RBDs). Potent antibodies recognize exposed variable epitopes, often rendering them ineffective against other sarbecoviruses and SARS-CoV-2 variants. Class 4 anti-RBD antibodies against a less-exposed, but more-conserved, cryptic epitope could recognize newly emergent zoonotic sarbecoviruses and variants, but they usually show only weak neutralization potencies. Here, we characterize two class 4 anti-RBD antibodies derived from coronavirus disease 2019 (COVID-19) donors that exhibit breadth and potent neutralization of zoonotic coronaviruses and SARS-CoV-2 variants. C118-RBD and C022-RBD structures reveal orientations that extend from the cryptic epitope to occlude ACE2 binding and CDRH3-RBD main-chain H-bond interactions that extend an RBD ß sheet, thus reducing sensitivity to RBD side-chain changes. A C118-spike trimer structure reveals rotated RBDs that allow access to the cryptic epitope and the potential for intra-spike crosslinking to increase avidity. These studies facilitate vaccine design and illustrate potential advantages of class 4 RBD-binding antibody therapeutics.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/immunology , Broadly Neutralizing Antibodies/pharmacology , Cross Reactions , Epitopes/metabolism , Humans , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
12.
bioRxiv ; 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33948592

ABSTRACT

Many anti-SARS-CoV-2 neutralizing antibodies target the ACE2-binding site on viral spike receptor-binding domains (RBDs). The most potent antibodies recognize exposed variable epitopes, often rendering them ineffective against other sarbecoviruses and SARS-CoV-2 variants. Class 4 anti-RBD antibodies against a less-exposed, but more-conserved, cryptic epitope could recognize newly-emergent zoonotic sarbecoviruses and variants, but usually show only weak neutralization potencies. We characterized two class 4 anti-RBD antibodies derived from COVID-19 donors that exhibited broad recognition and potent neutralization of zoonotic coronavirus and SARS-CoV-2 variants. C118-RBD and C022-RBD structures revealed CDRH3 mainchain H-bond interactions that extended an RBD ß-sheet, thus reducing sensitivity to RBD sidechain changes, and epitopes that extended from the cryptic epitope to occlude ACE2 binding. A C118-spike trimer structure revealed rotated RBDs to allow cryptic epitope access and the potential for intra-spike crosslinking to increase avidity. These studies facilitate vaccine design and illustrate potential advantages of class 4 RBD-binding antibody therapeutics.

13.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33831141

ABSTRACT

Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI-EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/immunology , Immunoglobulin G/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Viral/administration & dosage , Antibodies, Viral/genetics , Cells, Cultured , Cohort Studies , Cross Reactions/immunology , Encephalitis Viruses, Tick-Borne/drug effects , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/virology , Epitopes/immunology , Female , Humans , Immunoglobulin G/administration & dosage , Mice, Inbred BALB C , Sequence Homology, Amino Acid , Survival Analysis , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
14.
Science ; 371(6530): 735-741, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33436524

ABSTRACT

Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-related emergent zoonotic coronaviruses is urgently needed. We made homotypic nanoparticles displaying the receptor binding domain (RBD) of SARS-CoV-2 or co-displaying SARS-CoV-2 RBD along with RBDs from animal betacoronaviruses that represent threats to humans (mosaic nanoparticles with four to eight distinct RBDs). Mice immunized with RBD nanoparticles, but not soluble antigen, elicited cross-reactive binding and neutralization responses. Mosaic RBD nanoparticles elicited antibodies with superior cross-reactive recognition of heterologous RBDs relative to sera from immunizations with homotypic SARS-CoV-2-RBD nanoparticles or COVID-19 convalescent human plasmas. Moreover, after priming, sera from mosaic RBD-immunized mice neutralized heterologous pseudotyped coronaviruses as well as or better than sera from homotypic SARS-CoV-2-RBD nanoparticle immunizations, demonstrating no loss of immunogenicity against particular RBDs resulting from co-display. A single immunization with mosaic RBD nanoparticles provides a potential strategy to simultaneously protect against SARS-CoV-2 and emerging zoonotic coronaviruses.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19 Vaccines/immunology , Nanoparticles , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/immunology , Coronavirus Infections/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Immune Sera/immunology , Immunization , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Neutralization Tests , Protein Domains , Receptors, Antigen, B-Cell/immunology , Spike Glycoprotein, Coronavirus/chemistry , Viral Zoonoses/immunology , Viral Zoonoses/virology
15.
bioRxiv ; 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33236016

ABSTRACT

Protection against SARS-CoV-2 and SARS-related emergent zoonotic coronaviruses is urgently needed. We made homotypic nanoparticles displaying the receptor-binding domain (RBD) of SARS-CoV-2 or co-displaying SARS-CoV-2 RBD along with RBDs from animal betacoronaviruses that represent threats to humans (mosaic nanoparticles; 4-8 distinct RBDs). Mice immunized with RBD-nanoparticles, but not soluble antigen, elicited cross-reactive binding and neutralization responses. Mosaic-RBD-nanoparticles elicited antibodies with superior cross-reactive recognition of heterologous RBDs compared to sera from immunizations with homotypic SARS-CoV-2-RBD-nanoparticles or COVID-19 convalescent human plasmas. Moreover, sera from mosaic-RBD-immunized mice neutralized heterologous pseudotyped coronaviruses equivalently or better after priming than sera from homotypic SARS-CoV-2-RBD-nanoparticle immunizations, demonstrating no immunogenicity loss against particular RBDs resulting from co-display. A single immunization with mosaic-RBD-nanoparticles provides a potential strategy to simultaneously protect against SARS-CoV-2 and emerging zoonotic coronaviruses.

16.
Nature ; 588(7839): 682-687, 2020 12.
Article in English | MEDLINE | ID: mdl-33045718

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic presents an urgent health crisis. Human neutralizing antibodies that target the host ACE2 receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein1-5 show promise therapeutically and are being evaluated clinically6-8. Here, to identify the structural correlates of SARS-CoV-2 neutralization, we solved eight new structures of distinct COVID-19 human neutralizing antibodies5 in complex with the SARS-CoV-2 spike trimer or RBD. Structural comparisons allowed us to classify the antibodies into categories: (1) neutralizing antibodies encoded by the VH3-53 gene segment with short CDRH3 loops that block ACE2 and bind only to 'up' RBDs; (2) ACE2-blocking neutralizing antibodies that bind both up and 'down' RBDs and can contact adjacent RBDs; (3) neutralizing antibodies that bind outside the ACE2 site and recognize both up and down RBDs; and (4) previously described antibodies that do not block ACE2 and bind only to up RBDs9. Class 2 contained four neutralizing antibodies with epitopes that bridged RBDs, including a VH3-53 antibody that used a long CDRH3 with a hydrophobic tip to bridge between adjacent down RBDs, thereby locking the spike into a closed conformation. Epitope and paratope mapping revealed few interactions with host-derived N-glycans and minor contributions of antibody somatic hypermutations to epitope contacts. Affinity measurements and mapping of naturally occurring and in vitro-selected spike mutants in 3D provided insight into the potential for SARS-CoV-2 to escape from antibodies elicited during infection or delivered therapeutically. These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects and suggesting combinations for clinical use, and provide insight into immune responses against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/ultrastructure , COVID-19 Drug Treatment , COVID-19/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/ultrastructure , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Binding Sites/genetics , Binding Sites/immunology , Cell Line , Cryoelectron Microscopy , Humans , Models, Molecular , Mutation , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , Receptors, Coronavirus/ultrastructure , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure
17.
bioRxiv ; 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32869026

ABSTRACT

The COVID-19 pandemic presents an urgent health crisis. Human neutralizing antibodies (hNAbs) that target the host ACE2 receptor-binding domain (RBD) of the SARS-CoV-2 spike1-5 show therapeutic promise and are being evaluated clincally6-8. To determine structural correlates of SARS-CoV-2 neutralization, we solved 8 new structures of distinct COVID-19 hNAbs5 in complex with SARS-CoV-2 spike trimer or RBD. Structural comparisons allowed classification into categories: (1) VH3-53 hNAbs with short CDRH3s that block ACE2 and bind only to "up" RBDs, (2) ACE2-blocking hNAbs that bind both "up" and "down" RBDs and can contact adjacent RBDs, (3) hNAbs that bind outside the ACE2 site and recognize "up" and "down" RBDs, and (4) Previously-described antibodies that do not block ACE2 and bind only "up" RBDs9. Class 2 comprised four hNAbs whose epitopes bridged RBDs, including a VH3-53 hNAb that used a long CDRH3 with a hydrophobic tip to bridge between adjacent "down" RBDs, thereby locking spike into a closed conformation. Epitope/paratope mapping revealed few interactions with host-derived N-glycans and minor contributions of antibody somatic hypermutations to epitope contacts. Affinity measurements and mapping of naturally-occurring and in vitro-selected spike mutants in 3D provided insight into the potential for SARS-CoV-2 escape from antibodies elicited during infection or delivered therapeutically. These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects, suggesting combinations for clinical use, and providing insight into immune responses against SARS-CoV-2.

18.
Proc Natl Acad Sci U S A ; 117(18): 9865-9875, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32321830

ABSTRACT

Recent epidemics demonstrate the global threat of Zika virus (ZIKV), a flavivirus transmitted by mosquitoes. Although infection is usually asymptomatic or mild, newborns of infected mothers can display severe symptoms, including neurodevelopmental abnormalities and microcephaly. Given the large-scale spread, symptom severity, and lack of treatment or prophylaxis, a safe and effective ZIKV vaccine is urgently needed. However, vaccine design is complicated by concern that elicited antibodies (Abs) may cross-react with other flaviviruses that share a similar envelope protein, such as dengue virus, West Nile virus, and yellow fever virus. This cross-reactivity may worsen symptoms of a subsequent infection through Ab-dependent enhancement. To better understand the neutralizing Ab response and risk of Ab-dependent enhancement, further information on germline Ab binding to ZIKV and the maturation process that gives rise to potently neutralizing Abs is needed. Here we use binding and structural studies to compare mature and inferred-germline Ab binding to envelope protein domain III of ZIKV and other flaviviruses. We show that affinity maturation of the light-chain variable domain is important for strong binding of the recurrent VH3-23/VK1-5 neutralizing Abs to ZIKV envelope protein domain III, and identify interacting residues that contribute to weak, cross-reactive binding to West Nile virus. These findings provide insight into the affinity maturation process and potential cross-reactivity of VH3-23/VK1-5 neutralizing Abs, informing precautions for protein-based vaccines designed to elicit germline versions of neutralizing Abs.


Subject(s)
Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Dengue Virus/immunology , Dengue Virus/pathogenicity , Epitopes/immunology , Germ Cells/immunology , Humans , Infant, Newborn , Protein Domains/immunology , Viral Vaccines/immunology , West Nile virus/immunology , West Nile virus/pathogenicity , Yellow fever virus/immunology , Yellow fever virus/pathogenicity , Zika Virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology
19.
Cell Rep ; 25(6): 1385-1394.e7, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30403995

ABSTRACT

Zika virus (ZIKV) causes severe neurologic complications and fetal aberrations. Vaccine development is hindered by potential safety concerns due to antibody cross-reactivity with dengue virus and the possibility of disease enhancement. In contrast, passive administration of anti-ZIKV antibodies engineered to prevent enhancement may be safe and effective. Here, we report on human monoclonal antibody Z021, a potent neutralizer that recognizes an epitope on the lateral ridge of the envelope domain III (EDIII) of ZIKV and is protective against ZIKV in mice. When administered to macaques undergoing a high-dose ZIKV challenge, a single anti-EDIII antibody selected for resistant variants. Co-administration of two antibodies, Z004 and Z021, which target distinct sites on EDIII, was associated with a delay and a 3- to 4-log decrease in peak viremia. Moreover, the combination of these antibodies engineered to avoid enhancement prevented viral escape due to mutation in macaques, a natural host for ZIKV.


Subject(s)
Antibodies, Monoclonal/immunology , Mutation/genetics , Zika Virus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/immunology , Dengue Virus/immunology , Epitopes/immunology , HEK293 Cells , Humans , Macaca , Mice, Knockout , Protein Domains
20.
Cell ; 169(4): 597-609.e11, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28475892

ABSTRACT

Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure. Antibody cloning shows that donors with high ZIKV neutralizing antibody titers have expanded clones of memory B cells that express the same immunoglobulin VH3-23/VK1-5 genes. These recurring antibodies cross-react with DENV1, but not other flaviviruses, neutralize both DENV1 and ZIKV, and protect mice against ZIKV challenge. Structural analyses reveal the mechanism of recognition of the ZEDIII lateral ridge by VH3-23/VK1-5 antibodies. Serologic testing shows that antibodies to this region correlate with serum neutralizing activity to ZIKV. Thus, high neutralizing responses to ZIKV are associated with pre-existing reactivity to DENV1 in humans.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Zika Virus Infection/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Brazil , Female , Humans , Immunologic Memory , Leukocytes, Mononuclear/immunology , Male , Mexico , Mice , Zika Virus Infection/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...