Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Diagnostics (Basel) ; 14(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928678

ABSTRACT

Scoliosis, characterized by spine deformity, is most common in adolescent idiopathic scoliosis (AIS). Manual Cobb angle measurement limitations underscore the need for automated tools. This study employed a vertebral landmark extraction method and Feedforward Neural Network (FNN) to predict scoliosis progression in 79 AIS patients. The novel intervertebral angles matrix format showcased results. The mean absolute error for the intervertebral angle progression was 1.5 degrees, while the Pearson correlation of the predicted Cobb angles was 0.86. The accuracy in classifying Cobb angles (<15°, 15-25°, 25-35°, 35-45°, >45°) was 0.85, with 0.65 sensitivity and 0.91 specificity. The FNN demonstrated superior accuracy, sensitivity, and specificity, aiding in tailored treatments for potential scoliosis progression. Addressing FNNs' over-fitting issue through strategies like "dropout" or regularization could further enhance their performance. This study presents a promising step towards automated scoliosis diagnosis and prognosis.

2.
Microorganisms ; 12(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276193

ABSTRACT

Psoriasis is a chronic immune-mediated inflammatory disease affecting the skin and other systems. Gastrointestinal disease was found to be correlated with psoriasis in previous studies and it can significantly affect the quality of life of psoriasis patients. Despite the importance of the gut microbiome in gut and skin health having already been demonstrated in many research studies, the potential effect of probiotics on GI comorbidities in psoriasis patients is unclear. To investigate the effects of probiotics on functional GI comorbidities including irritable bowel syndrome, functional constipation, and functional diarrhea in psoriasis patients, we conducted a targeted 16S rRNA sequencing and comprehensive bioinformatic analysis among southern Chinese patients to compare the gut microbiome profiles of 45 psoriasis patients over an 8-week course of novel oral probiotics. All the participants were stratified into responders and non-responders according to their improvement in GI comorbidities, which were based on their Bristol Stool Form Scale (BSFS) scores after intervention. The Dermatological Life Quality Index (DLQI) score revealed a significant improvement in quality of life within the responder group (DLQI: mean 10.4 at week 0 vs. mean 15.9 at week 8, p = 0.0366). The proportion of psoriasis patients without GI comorbidity manifestation at week 8 was significantly higher than that at week 0 (week 0: Normal 53.33%, Constipation/Diarrhea 46.67%; week 8: Normal 75.56%, Constipation/Diarrhea 24.44%, p = 0.0467). In addition, a significant difference in the gut microbiome composition between the responders and non-responders was observed according to alpha and beta diversities. Differential abundance analysis revealed that the psoriasis patients exhibited (1) an elevated relative abundance of Lactobacillus acidophilus, Parabacteroides distasonis, and Ruminococcus bromii and (2) a reduced relative abundance of Oscillibacter, Bacteroides vulgatus, Escherichia sp., and Biophila wadsworthia after the 8-week intervention. The responders also exhibited a higher relative abundance of Fusicatenibacter saccharivorans when compared to the non-responders. In summary, our study discovers the potential clinical improvement effects of the novel probiotic formula in improving GI comorbidities and quality of life in psoriasis patients. We also revealed the different gut microbiome composition as well as the gut microbial signatures in the patients who responded to probiotics. These findings could provide insight into the use of probiotics in the management of psoriasis symptoms.

3.
Biomedicines ; 12(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275421

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal deformity that is associated with low bone mineral density (BMD). Vitamin D (Vit-D) supplementation has been suggested to improve BMD in AIS, and its outcomes may be related to genetic factors. The present study aimed to (a) investigate the synergistic effect between a low BMD-related gene (wingless-related integration site 16, WNT16) and two important Vit-D pathway genes (Vit-D receptor, VDR, and Vit-D binding protein, VDBP) on serum Vit-D and bone qualities in Chinese AIS patients and healthy adolescents, and (b) to further investigate the effect of ablating Wnt16 on the cortical bone quality and whether diets with different dosages of Vit-D would further influence bone quality during the rapid growth phase in mice in the absence of Wnt16. A total of 519 girls (318 AIS vs. 201 controls) were recruited, and three selected single-nucleotide polymorphisms (SNPs) (WNT16 rs3801387, VDBP rs2282679, and VDR rs2228570) were genotyped. The serum 25(OH)Vit-D level was significantly associated with VDBP rs2282679 alleles (OR = -4.844; 95% CI, -7.521 to -2.167, p < 0.001). Significant multi-locus models were identified by generalized multifactor dimensionality reduction (GMDR) analyses on the serum 25(OH)Vit-D level (p = 0.006) and trabecular area (p = 0.044). In the gene-edited animal study, Wnt16 global knockout (KO) and wildtype (WT) male mice were provided with different Vit-D diets (control chow (1000 IU/Kg) vs. Vit-D-deficient chow (Nil in Vit-D) vs. high-dose Vit-D chow (20,000 IU/Kg)) from 4 weeks to 10 weeks old. Wnt16 global KO mice had significantly lower serum 25(OH)Vit-D levels and higher liver Vdbp mRNA expression levels than WT mice. In addition, Wnt16 global KO mice showed a decrease in bone density, cortical thickness and cortical area compared with WT mice. Interestingly, high-dose Vit-D chow led to lower bone density, cortical thickness, and cortical area in WT mice, which were less obvious in Wnt16 global KO mice. In conclusion, WNT16 may regulate the serum 25(OH)Vit-D level and bone qualities, which might be associated with VDBP expression. Further investigations with a larger sample size and wider spectrum of scoliosis severity are required to validate our findings regarding the interaction between WNT16 and Vit-D status in patients with AIS.

4.
Nutrients ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38140296

ABSTRACT

Mental health issues have emerged as a significant concern in public health, given their association with physical and psychological comorbidities and the resultant socioeconomic burdens. Recent studies have highlighted the interplay between gut microbes and brain functions through the gut-brain axis. To investigate this further, we conducted a targeted 16S rRNA sequencing and comprehensive bioinformatic analysis among Southern Chinese individuals to explore the role of the gut microbiome in depression, anxiety, and sleep disturbance. We analyzed the differences in the gut microbiome profile of 68 participants with sleep disturbance and mood symptoms before and after an 8-week course of a novel oral E3 multi-strain probiotics formula. The results revealed a significant improvement in subjective sleep quality (PSQI: mean 8.79 at baseline vs. 7.10 at week 8, p < 0.001), depressive symptoms (PHQ9: mean 6.17 at baseline vs. 4.76 at week 8, p < 0.001), and anxious symptoms (GAD7: mean 4.90 at baseline vs. 3.76 at week 8, p < 0.001). Additionally, there were notable differences in beta diversity (weighted UniFrac; p = 0.045) and increased Firmicutes/Bacteroidetes (F/B) ratio (p = 4 × 10-4) were observed in the gut microbiome analysis. Furthermore, the relative abundance of Bifidobacterium bifidum (p < 0.001), Lactobacillus acidophilus (p < 0.001), Lactobacillus helveticus (p < 0.001) and Lactobacillus plantarum (p < 0.001) were significantly increased after the 8-week probiotic supplementation. Our study suggests that the gut microbial landscape varies between responders and non-responders at multiple levels, including genera, species, functional, and network interaction. Notably, the use of probiotics in populations with depressive or anxious symptoms and poor sleeping quality remodeled the gut microbiome and demonstrated improved mood and sleep quality.


Subject(s)
Probiotics , Sleep Quality , Humans , Mental Health , RNA, Ribosomal, 16S/genetics , Hong Kong , Probiotics/therapeutic use
5.
Microorganisms ; 11(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37764019

ABSTRACT

Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a significant association with various type-2 inflammation-related comorbidities. Ongoing research suggests the crucial involvement of gut microbiome, especially in childhood onset AD, and hence, probiotics have emerged as a potential non-steroid-based therapeutics option to complement existing AD management plans. In order to delineate the impact of probiotics in the gut microbiome of pediatric AD patients from southern China, targeted 16S rRNA sequencing and thorough bioinformatic analysis were performed to analyze the gut microbiome profiles of 24 AD children after taking an orally administered novel synbiotics formula with triple prebiotics for 8 weeks. A notable improvement in Eczema Area and Severity Index (EASI) (p = 0.008) was observed after taking an 8-week course of probiotics, with no adverse effects observed. The relative abundances of key microbial drivers including Bacteroides fragilis and Lactobacillus acidophilus were significantly increased at week 8. We also found that the positive responsiveness towards an 8-week course of probiotics was associated with improvements in the gut microbiome profile with a higher relative abundance of probiotic species. Over-represented functional abundance pathways related to vitamin B synthesis and peptidoglycan recycling may imply the underlying mechanism. In summary, our study suggests how the gut microbial landscape shifts upon probiotic supplementation in AD children, and provides preliminary evidence to support targeted probiotic supplementation for the management of childhood AD.

6.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047542

ABSTRACT

Psoriasis is a common chronic immune-mediated inflammatory skin disease with the association of various comorbidities. Despite the introduction of highly effective biologic therapies over the past few decades, the exact trigger for an immune reaction in psoriasis is unclear. With the majority of immune cells residing in the gut, the effect of gut microbiome dysbiosis goes beyond the gastrointestinal site and may exacerbate inflammation and regulate the immune system elsewhere, including but not limited to the skin via the gut-skin axis. In order to delineate the role of the gut microbiome in Southern Chinese psoriasis patients, we performed targeted 16S rRNA sequencing and comprehensive bioinformatic analysis to compare the gut microbiome profile of 58 psoriasis patients against 49 healthy local subjects presumably with similar lifestyles. Blautia wexlerae and Parabacteroides distasonis were found to be enriched in psoriasis patients and in some of the healthy subjects, respectively. Metabolic functional pathways were predicted to be differentially abundant, with a clear shift toward SCFA synthesis in healthy subjects. The alteration of the co-occurrence network was also evident in the psoriasis group. In addition, we also profiled the gut microbiome in 52 of the 58 recruited psoriasis patients after taking 8 weeks of an orally administrated novel E3 probiotics formula (with prebiotics, probiotics and postbiotics). The Dermatological Life Quality Index (p = 0.009) and Psoriasis Area and Severity Index (p < 0.001) were significantly improved after taking 8 weeks of probiotics with no adverse effect observed. We showed that probiotics could at least partly restore gut dysbiosis via the modulation of the gut microbiome. Here, we also report the potential application of a machine learning-derived gut dysbiosis index based on a quantitative PCR panel (AUC = 0.88) to monitor gut dysbiosis in psoriasis patients. To sum up, our study suggests the gut microbial landscape differed in psoriasis patients at the genera, species, functional and network levels. Additionally, the dysbiosis index could be a cost-effective and rapid tool to monitor probiotics use in psoriasis patients.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Probiotics , Psoriasis , Adult , Humans , Dysbiosis/complications , Dysbiosis/drug therapy , East Asian People , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Probiotics/pharmacology , Probiotics/therapeutic use , Psoriasis/complications , Psoriasis/drug therapy , RNA, Ribosomal, 16S/genetics
7.
Bioengineering (Basel) ; 9(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36290493

ABSTRACT

We develop a poly (lactic-co-glycolic acid)/ß-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.

8.
Front Immunol ; 11: 579687, 2020.
Article in English | MEDLINE | ID: mdl-33193379

ABSTRACT

Accumulating evidence suggests that long non-coding RNA H19 correlates with several aging processes. However, the role of H19 in aging remains unclear. Many studies have elucidated a close connection between H19 and inflammatory genes. Chronic systemic inflammation is an established factor associated with various diseases during aging. Thus, H19 might participate in the development of age-related diseases by interplay with inflammation and therefore provide a protective function against age-related diseases. We investigated the inflammatory gene network of H19 to understand its regulatory mechanisms. H19 usually controls gene expression by acting as a microRNA sponge, or through mir-675, or by leading various protein complexes to genes at the chromosome level. The regulatory gene network has been intensively studied, whereas the biogenesis of H19 remains largely unknown. This literature review found that the epithelial-mesenchymal transition (EMT) and an imprinting gene network (IGN) might link H19 with inflammation. Evidence indicates that EMT and IGN are also tightly controlled by environmental stress. We propose that H19 is a stress-induced long non-coding RNA. Because environmental stress is a recognized age-related factor, inflammation and H19 might serve as a therapeutic axis to fight against age-related diseases.


Subject(s)
Aging/physiology , Inflammation/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Animals , Environmental Exposure/adverse effects , Gene Regulatory Networks , Humans , Signal Transduction , Stress, Physiological
9.
Calcif Tissue Int ; 105(5): 531-545, 2019 11.
Article in English | MEDLINE | ID: mdl-31435709

ABSTRACT

Anti-resorptive agents like bisphosphonates have been widely used for the treatment of postmenopausal osteoporosis. However, their long-term safety and efficacy are still controversial. This study is to examine the effect of Asiatic acid (AA) in osteoclastic differentiation, and further to investigate its effect on bone quality in animals. Effect of AA on osteoclastic differentiation was measured by Tartrate-resistant acid phosphatase stain, bone resorption pit assays, and quantitative real-time polymerase chain reaction. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transforming growth factor-ß (TGF-ß) signaling were measured by western blot before and after AA treatment. Ovariectomized (OVX) wild-type or Smad7 partially knock out mice were used to evaluate the effects of AA on bone quality by micro-computed tomography, mechanical test, and histomorphometry. Results revealed a dose-dependent inhibitory effect of AA on osteoclastic differentiation. After AA treatment, Smad7 was upregulated, while NF-κB and TGF-ß signaling were inhibited during osteoclastic differentiation. Results from animal study revealed that AA prevented bone from further loss caused by OVX and increased the mechanical properties of femur in wild-type animals. AA also prevented bone loss in the Smad7-deficient animals. When combining with OVX in the Smad7-deficient mice, AA could only partially preserve their bone mass. Taken together, we found that AA effectively inhibited osteoclastic differentiation and attenuated osteoporosis, which effects may be through TGF-ß and NF-κB pathways. This study reveals that AA may be a potential anti-resorptive agent for postmenopausal osteoporosis.


Subject(s)
Bone Density Conservation Agents/pharmacology , Cell Differentiation/drug effects , Osteoclasts/drug effects , Pentacyclic Triterpenes/pharmacology , Animals , Bone Density/drug effects , Female , Mice , Mice, Inbred ICR , Osteoporosis/prevention & control
10.
FASEB J ; 31(9): 3800-3815, 2017 09.
Article in English | MEDLINE | ID: mdl-28495756

ABSTRACT

Tendons are a mechanosensitive tissue, which enables them to transmit to bone forces that are derived from muscle. Patients with tendon injuries, such as tendinopathy or tendon rupture, were often observed with matrix degeneration, and the healing of tendon injuries remains a challenge as a result of the limited understanding of tendon biology. Our study demonstrates that the stretch-mediated activation channel, cystic fibrosis transmembrane conductance regulator (CFTR), was up-regulated in tendon-derived stem cells (TDSCs) during tenogenic differentiation under mechanical stretching. Tendon tissues in CFTR-dysfunctional DF508 mice exhibited irregular cell arrangement, uneven fibril diameter distribution, weak mechanical properties, and less matrix formation in a tendon defect model. Moreover, both tendon tissues and TDSCs isolated from DF508 mice showed significantly decreased levels of tendon markers, such as scleraxis, tenomodulin, Col1A1 (collagen type I α 1 chain), and decorin Furthermore, by RNA sequencing analysis, we demonstrated that Wnt/ß-catenin signaling was abnormally activated in TDSCs from DF508 mice, thereby further activating the pERK1/2 signaling pathway. Of most importance, we found that intervention in pERK1/2 signaling could promote tenogenic differentiation and tendon regeneration both in vitro and in vivo Taken together, our study demonstrates that CFTR plays an important role in tenogenic differentiation and tendon regeneration by inhibiting the ß-catinin/pERK1/2 signaling pathway. The therapeutic strategy of intervening in the CFTR/ß-catenin/pERK1/2 regulatory axis may be helpful for accelerating tendon injury healing, which has implications for tendon injury management.-Liu, Y., Xu, J., Xu, L., Wu, T., Sun, Y., Lee, Y.-W., Wang, B., Chan, H.-C., Jiang, X., Zhang, J., Li, G. Cystic fibrosis transmembrane conductance regulator mediates tenogenic differentiation of tendon-derived stem cells and tendon repair: accelerating tendon injury healing by intervening in its downstream signaling.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Signal Transduction/physiology , Tendon Injuries/therapy , Tendons/cytology , Animals , Biomechanical Phenomena , Cell Differentiation , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/physiology , Male , Mice , Mice, Inbred CFTR , Rats , Rats, Sprague-Dawley , Stem Cell Transplantation , Stem Cells/metabolism , Up-Regulation , beta Catenin/genetics , beta Catenin/metabolism
11.
Stem Cell Res Ther ; 4(3): 70, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23763837

ABSTRACT

INTRODUCTION: Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. METHODS: Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. RESULTS: Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage inflammatory protein-2, vascular endothelial growth factor, transforming growth factor-beta and IL-6) was increased. CONCLUSION: These results indicate that BM-MSCs promote tumor growth and suggest that the crosstalk between tumor cells and BM-MSCs increased the expression of pro-angiogenic factors, which may have induced tumor cell proliferation and angiogenesis thereby increasing solid tumor growth.


Subject(s)
Bone Marrow Cells/cytology , Breast Neoplasms/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Prostatic Neoplasms/pathology , Animals , Breast Neoplasms/blood supply , Cell Proliferation , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned/pharmacology , Female , Humans , Interleukin-6/metabolism , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , Neovascularization, Pathologic , Prostatic Neoplasms/blood supply , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/metabolism
12.
PLoS One ; 7(8): e41264, 2012.
Article in English | MEDLINE | ID: mdl-22952579

ABSTRACT

We found that Icaritin, an intestinal metabolite of Epimedium-derived flavonoids (EF) enhanced osteoblastic differentiation of mesenchymal stem cells (MSCs) only under osteogenic induction conditions. We also demonstrated its effect on inhibition of adipogenic differentiation of MSCs. Unlike the findings of others on EF compounds, we showed that Icaritin was unable to promote proliferation, migration and tube like structure formation by human umbilical vein endothelial cells (HUVECs) in vitro. These results suggested that the exogenous phytomolecule Icaritin possessed the potential for enhancing bone formation via its osteopromotive but not an osteoinductive mechanism. Though some flavonoids were shown to regulate the coupling process of angiogenesis and osteogenesis during bone repair, our results suggested that Icaritin did not have direct effect on enhancing angiogenesis in vitro.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Endothelial Cells/drug effects , Flavonoids/metabolism , Neovascularization, Pathologic , Osteogenesis/physiology , Bone Marrow Cells/cytology , Bone and Bones/metabolism , Cell Differentiation , Cell Movement , Cell Proliferation , Drug Screening Assays, Antitumor , Endothelial Cells/cytology , Flavonoids/pharmacology , Humans , In Vitro Techniques , Osteoblasts/cytology , Phenotype , Stem Cells/cytology , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology
13.
J Orthop Res ; 30(4): 613-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21928428

ABSTRACT

Injured tendons heal slowly and often result in the formation of mechanically and functionally inferior fibrotic scar tissue or fibrous adhesions. This study investigated the use of tendon-derived stem cells (TDSCs) for tendon repair in a rat patellar tendon window defect model. Fibrin glue constructs with or without GFP-TDSCs were transplanted into the window defect. The patellar tendons were harvested for histology, ex vivo fluorescent imaging and biomechanical test at various time points up to week 4. Our results showed that TDSCs significantly enhanced tendon healing as indicated by the increase in collagen production as shown by hematolxylin stain-ability of the tissue, improvement of cell alignment, collagen fiber alignment and collagen birefringence typical of tendon. The labeled cells were observed at weeks 1 and 2 and became almost undetectable at week 4. Both the ultimate stress and Young's modulus were significantly higher in the TDSCs group compared to those in the fibrin glue group at week 4. In conclusion, TDSCs promoted earlier and better repair in a rat patellar tendon window defect model.


Subject(s)
Adult Stem Cells/physiology , Patellar Ligament , Stem Cell Transplantation , Tendon Injuries/physiopathology , Tendon Injuries/therapy , Wound Healing/physiology , Animals , Animals, Outbred Strains , Biomechanical Phenomena/physiology , Disease Models, Animal , Fibrin Tissue Adhesive/pharmacology , Male , Patellar Ligament/cytology , Patellar Ligament/injuries , Patellar Ligament/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Regeneration/physiology , Tissue Adhesives/pharmacology , Tissue Engineering
14.
Int Orthop ; 36(5): 1099-107, 2012 May.
Article in English | MEDLINE | ID: mdl-22134708

ABSTRACT

PURPOSE: Surgical reattachment of tendon to bone often fails due to regeneration failure of the specialised tendon-bone junction (TBJ). The use of mesenchymal stem cells for TBJ regeneration has been reported with promising results. Tendon-derived stem cells (TDSCs) with high proliferative and multi-lineage differentiation potential have been isolated. As stem cells residing in tendons, TDSCs can be considered a new cell source for TBJ repair. Bone morphogenic protein 2 (BMP-2) is a potent osteogenic factor with roles in normal bone healing and pathological ectopic bone formation in soft tissues. The use of BMP-2 to promote TBJ repair has been well reported. This study aimed to compare TDSCs to the gold standard bone-marrow-derived mesenchymal stem cells (BMSCs) with respect to osteogenic response to BMP-2 in vitro. METHOD: The clonogenicity and multi-differentiation potential of TDSCs and BMSCs were identified by colony-forming-unit assay, osteogenic, adipogenic and chondrogenic differentiation assays. Their osteogenic response to BMP-2 in vitro was examined by alkaline phosphatase (ALP) cytochemical staining, ALP activity assay and Alizarin red S staining of calcium nodule formation. Messenger RNA (mRNA) and BMP receptor (types IA, IB and II) protein expression were examined by quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. RESULTS: Our results showed that both TDSCs and BMSCs exhibited stem cell properties, including clonogenicity and multi-differentiation potential. TDSCs expressed higher mRNA and protein levels of BMP receptors IA, IB and II. They also exhibited higher osteogenic differentiation with and without BMP-2 stimulation compared with BMSCs. CONCLUSIONS: TDSCs with/without BMP-2 might be an attractive source for TBJ repair compared with BMSCs.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein Receptors/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Stem Cells/metabolism , Tendons/cytology , Alkaline Phosphatase/metabolism , Animals , Blotting, Western , Cell Culture Techniques , Cell Differentiation , Gene Expression , Mesenchymal Stem Cells/cytology , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Tendons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...