Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 10(12)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801276

ABSTRACT

In recent years, microfluidic devices have become an important tool for use in lab-on-a-chip processes, including drug screening and delivery, bio-chemical reactions, sample preparation and analysis, chemotaxis, and separations. In many such processes, a flat cross-sectional concentration profile with uniform flow velocity across the channel is desired to achieve controlled and precise solute transport. This is often accommodated by the use of electroosmotic flow, however, it is not an ideal for many applications, particularly biomicrofluidics. Meanwhile, pressure-driven systems generally exhibit a parabolic cross-sectional concentration profile through a channel. We draw inspiration from finite element fluid dynamics simulations to design and fabricate a practical solution to achieving a flat solute concentration profile in a two-dimensional (2D) microfluidic channel. The channel possesses geometric features to passively flatten the solute profile before entering the defined region of interest in the microfluidic channel. An obviously flat solute profile across the channel is demonstrated in both simulation and experiment. This technology readily lends itself to many microfluidic applications which require controlled solute transport in pressure driven systems.

2.
ACS Appl Mater Interfaces ; 9(51): 44911-44921, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29214806

ABSTRACT

Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closely spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.

3.
ACS Appl Mater Interfaces ; 8(47): 32616-32623, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27933818

ABSTRACT

Two-phase liquid-cooling technologies incorporating micro/nanostructured copper or silicon surfaces have been established as a promising thermal management solution to keep up with the increasing power demands of high power electronics. However, the reliability of nanometer-scale features of copper and silicon in these devices has not been well investigated. In this work, accelerated corrosion testing reveals that copper nanowires are not immune to corrosion in deaerated pure hot water. To solve this problem, we investigate atomic layer deposition (ALD) TiO2 coatings grown at 150 and 175 °C. We measured no difference in coating thickness for a duration of 12 days. Using a core/shell approach, we grow ALD TiO2/Al2O3 protective coatings on copper nanowires and demonstrate a preservation of nanoengineered copper features. These studies have identified a critical reliability problem of nanoscale copper and silicon surfaces in deaerated, pure, hot water and have successfully demonstrated a reliable solution using ALD TiO2/Al2O3 protective coatings.

4.
Nano Lett ; 13(11): 5594-9, 2013.
Article in English | MEDLINE | ID: mdl-24164650

ABSTRACT

Atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques with atomic level control enable a new class of hybrid organic-inorganic materials with improved functionality. In this work, the cross-plane thermal conductivity and volumetric heat capacity of three types of hybrid organic-inorganic zincone thin films enabled by MLD processes and alternate ALD-MLD processes were measured using the frequency-dependent time-domain thermoreflectance method. We revealed the critical role of backbone flexibility in the structural morphology and thermal conductivity of MLD zincone thin films by comparing the thermal conductivity of MLD zincone films with an aliphatic backbone to that with aromatic backbone. Much lower thermal conductivity values were obtained in ALD/MLD-enabled hybrid organic-inorganic zincone thin films compared to that of the ALD-enabled W/Al2O3 nanolaminates reported by Costescu et al. [Science 2004, 303, 989-990], which suggests that the dramatic material difference between organic and inorganic materials may provide a route for producing materials with ultralow thermal conductivity.


Subject(s)
Formazans/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Thermal Conductivity , Biomimetic Materials/chemistry , Hot Temperature , Inorganic Chemicals/chemistry , Organic Chemicals/chemistry , Particle Size , Surface Properties
5.
Nano Lett ; 12(2): 655-60, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22208851

ABSTRACT

The areal capacity of nanowire-based microbatteries can be potentially increased by increasing the length of nanowires. However, agglomeration of high aspect ratio nanowire arrays could greatly degrade the performance of nanowires for lithium ion (Li-ion) battery applications. In this work, a three-dimensional (3-D) Ni/TiO(2) nanowire network was successfully fabricated using a 3-D porous anodic alumina (PAA) template-assisted electrodeposition of Ni followed by TiO(2) coating using atomic layer deposition. Compared to the straight Ni/TiO(2) nanowire arrays fabricated using conventional PAA templates, the 3-D Ni/TiO(2) nanowire network shows higher areal discharging capacity. The areal capacity increases proportionally with the length of nanowires. With a stable Ni/TiO(2) nanowire network structure, 100% capacity is retained after 600 cycles. This work paves the way to build reliable 3-D nanostructured electrodes for high areal capacity microbatteries.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Nanowires/chemistry , Nickel/chemistry , Titanium/chemistry , Ions/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...