Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 272(Pt 1): 132845, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830495

ABSTRACT

Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.

2.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38671858

ABSTRACT

Seaweed, in particular, brown seaweed, has gained research interest in the past few years due to its distinctive phenolic profile that has a multitude of bioactive properties. In order to obtain the maximum extraction efficiency of brown seaweed phenolic compounds, Response Surface Methodology was utilized to optimize the ultrasound-assisted extraction (UAE) conditions such as the amplitude, time, solvent:solid ratio, and NaOH concentration. Under optimal conditions, UAE had a higher extraction efficiency of free and bound phenolic compounds compared to conventional extraction (stirred 16 h at 4 °C). This led to higher antioxidant activity in the seaweed extract obtained under UAE conditions. The profiling of phenolic compounds using LC-ESI-QTOF-MS/MS identified a total of 25 phenolics with more phenolics extracted from the free phenolic extraction compared to the bound phenolic extracts. Among them, peonidin 3-O-diglucodise-5-O-glucoside and hesperidin 5,7-O-diglucuronide are unique compounds that were identified in P. comosa, E. radiata and D. potatorum, which are not reported in plants. Overall, our findings provided optimal phenolic extraction from brown seaweed for research into employing brown seaweed as a functional food.

3.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991467

ABSTRACT

Seaweed is rich in many unique bioactive compounds such as polyphenols and sulfated polysaccharides that are not found in terrestrial plant. The discovery of numerous biological activities from seaweed has made seaweed an attractive functional food source with the potential to be exploited for human health benefits. During food processing and digestion, cell wall polysaccharide and polyphenols commonly interact, and this may influence the nutritional properties of food. Interactions between cell wall polysaccharide and polyphenols in plant-based system has been extensively studied. However, similar interactions in seaweed have received little attention despite the vast disparity between the structural and chemical composition of plant and seaweed cell wall. This poses a challenge in extracting seaweed bioactive compounds with intact biological properties. This review aims to summarize the cell wall polysaccharide and polyphenols present in brown, red and green seaweed, and current knowledge on their potential interactions. Moreover, this review gives an overview of the gut modulation effect of seaweed polysaccharide and polyphenol.

4.
J Food Sci ; 87(8): 3542-3561, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35833588

ABSTRACT

Reducing fat intake from our daily diet serves to be an effective way to combat the rising obesity issue worldwide. Hence, reducing fat content in mayonnaise, a high fat food product, is one of the primary trends in the food industry. To date, research on the use of nanocellulose, a new and emerging form of fat mimetic, in mayonnaise formulation remains limited. This study sets out to formulate reduced fat 5%, 15%, and 30% mayonnaise using varying concentration of nanocellulose synthesized from palm pressed fiber followed by a 20-day stability study. Nanocellulose was synthesized with particle size of 106.0 ± 18.7 nm and zeta potential of -72.5 ± 2.26 mV. It was used as fat mimetic in mayonnaise. Rheological analysis conducted showed that incorporation of nanocellulose into reduced fat mayonnaise formulation was able to counteract the loss of viscosity in mayonnaise caused by fat content reduction. This finding was further supported by the smaller oil droplets that are closely packed in reduced fat mayonnaise formulation when viewed under light microscope. Nonetheless, significant oil droplet coalescence was found in reduced fat mayonnaise formulations during storage period which could lead to loss of viscosity. Taken together, these findings suggest that CNF was able to act as fat mimetic upon formulation of mayonnaise but the same cannot be said during long term storage of mayonnaise. PRACTICAL APPLICATION: We successfully isolated nanocellulose from palm biomass (palm pressed fiber) using green approach and used it as a fat replacer for preparation of 5%, 15%, and 30% reduced fat mayonnaise. A computation study revealed a strong binding affinity of the nanocellulose on the lipase active site essential to inhibit the digestion of fats and oils. Therefore, nanocellulose demonstrated a huge potential to be used as not only as fat replacer but also rheological modifier for the development of reduced fat or vegan foods.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Condiments/analysis , Dietary Fiber/analysis , Plant Oils/chemistry , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...