Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 283: 131172, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34157624

ABSTRACT

Polyhydroxyalkanoates (PHAs) are bioplastic substitutes for petroleum-derived plastics that may help to reduce the increasing environmental impact of plastic pollution. Among them, polyhydroxybutyrate (PHB) is a promising biopolymer, incentivizing many researchers to search for PHB-producing and PHB-degrading bacteria for improved PHB utilization. Many novel PHB-producing microorganisms have been discovered; however, relatively few PHB-degrading bacteria have been identified. Six PHB-degrading bacteria were found in marine soil and investigated their PHB-degrading abilities under various temperature and salinity conditions using solid-media based culture. Finally, thermotolerant and halotolerant PHB-degrader Bacillus sp. JY14 was selected. PHB degradation was confirmed by monitoring changes in the physical and chemical properties of PHB films incubated with Bacillus sp. JY14 using scanning electron microscopy, Fourier-transform infrared spectroscopy, and gel permeation chromatography. Further, PHB degradation ability of Bacillus sp. JY14 was measured in liquid culture by gas chromatography. After 14 days of cultivation with PHB film, Bacillus sp. JY14 achieved approximately 98% PHB degradation. Applying various bioplastics to assess the bacteria's biodegradation capabilities, the result showed that Bacillus sp. JY14 could also degrade P(3HB-co-4HB) and P(3HB-co-3HV). Overall, this study identified a thermotolerant and halotolerant bacteria capable of PHB degradation under solid and liquid conditions. These results suggest that this bacteria could be utilized to degrade various PHAs.


Subject(s)
Bacillus , Polyhydroxyalkanoates , Bacillus/genetics , Biodegradation, Environmental , Hydroxybutyrates , Plastics , Polyesters
2.
Bioresour Technol ; 324: 124674, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33445012

ABSTRACT

In the present study, an exopolysaccharide (EPS)-producing bacterial strain was isolated from the Eastern Sea (Sokcho Beach) of South Korea and identified as Sphingobium yanoikuyae BBL01. Media optimization was performed using response surface design, and a yield of 2.63 ± 0.02 g/L EPS was achieved. Purified EPS produced using lactose as the main carbon source was analyzed by GC-MS and found to be composed of α-D-xylopyranose (28.6 ± 2.0%), ß-D-glucopyranose (21.0 ± 1.6%), α-D-mannopyranose (18.5 ± 1.2%), ß-d-mannopyranose (13.1 ± 1.4%), ß-D-xylopyranose (10.2 ± 2.1%), α-d-talopyranose (5.9 ± 1.1%), and ß-d-galacturonic acid (2.43 ± 0.8%). Interestingly, different carbon sources (glucose, galactose, glycerol, lactose, sucrose, and xylose) showed no effect on EPS monomer composition, with a slight change in the mass percentage of various monosaccharides. Purified EPS was stable up to 233 °C, indicating its possible suitability as a thickening and gelling agent for food-related applications. EPS also showed considerable emulsifying, flocculating, free-radical scavenging, and metal-complexion activity, suggesting various biotechnological applications.


Subject(s)
Bioprospecting , Polysaccharides, Bacterial , Monosaccharides , Republic of Korea , Sphingomonadaceae
3.
Chemosphere ; 264(Pt 2): 128539, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33059279

ABSTRACT

The present study aimed towards adsorptive removal of the toxic azo dye onto biochar derived from Eucheuma spinosum biomass. Characterization of the produced biochar was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET). Eucheuma spinosum biochar (ES-BC) produced at 600 °C revealed a maximum adsorption capacity of 331.97 mg/g towards reactive red 120 dye. The adsorption data fitted best to the pseudo-second order kinetics (R2 > 0.99) and Langmuir isotherm (R2 > 0.98) models. These adsorption models signified the chemisorption mechanism with monolayer coverage of the adsorbent surface with dye molecules. Furthermore, the adsorption process was mainly governed by electrostatic interaction, ion exchange, metal complexation, and hydrogen bonding as supported by the solution pH, FTIR, XPS, and XRD investigation. Nevertheless, alone adsorption technology could not offer a complete solution for eliminating the noxious dyes. Therefore, the bioelectrochemical system (BES) equipped with previously isolated marine Shewanella marisflavi BBL25 was intended for the complete remediation of azo dye. The BES II demonstrated highest dye decolorization (97.06%) within 48 h at biocathode where the reductive cleavage of the azo bond occurred. Cyclic voltammetry (CV) studies of the BES revealed perfect redox reactions taking place where the redox mediators shuttled the electrons to the dye molecule to accelerate the dye decolorization. Besides, the GC-MS analysis revealed biotransformation of the dye into less toxic metabolites as tested using a phyto and cytogenotoxicity.


Subject(s)
Shewanella , Water Pollutants, Chemical , Adsorption , Azo Compounds , Biomass , Charcoal , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...