Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-11088753

ABSTRACT

We present spectroscopic measurements of the helium-like and lithium-like argon emission supported by Thomson scattering diagnostics on gas bag targets. These data provide critical tests of plasma spectroscopic K-shell models. In particular, we have measured the line radiation in the wavelength region of the He-like Ar 1s(2)-1s3l transition (He-beta) that is of interest for density and temperature measurements of plasmas from gas-filled targets (n(e)/=10(24) cm(-3)). The spectra show lithium-like dielectronic satellites on the red wing of the He-beta line that are temperature sensitive and are known to influence the shape of the Stark-broadened line profiles observed from implosions. To examine the kinetics modeling of this complex, i.e., the He-beta and its associated satellites, we have performed experiments in gas bag plasmas at densities of (0.6-1.1)x10(21) cm(-3) where we independently determine the electron temperature with ultraviolet Thomson scattering. The comparison of the satellite intensities with kinetics modeling shows good agreement for satellites whose upper states are populated by dielectronic capture, but shows discrepancies for inner-shell collisional excited transitions.

2.
Phys Rev Lett ; 84(1): 111-4, 2000 Jan 03.
Article in English | MEDLINE | ID: mdl-11015847

ABSTRACT

Time-resolved x-ray diffraction with picosecond temporal resolution is used to observe scattering from impulsively generated coherent acoustic phonons in laser-excited InSb crystals. The observed frequencies and damping rates are in agreement with a model based on dynamical diffraction theory coupled to analytic solutions for the laser-induced strain profile. The results are consistent with a 12 ps thermal electron-acoustic phonon coupling time together with an instantaneous component from the deformation-potential interaction. Above a critical laser fluence, we show that the first step in the transition to a disordered state is the excitation of large amplitude, coherent atomic motion.

3.
J Exp Biol ; 202 (Pt 3): 289-300, 1999 Feb.
Article in English | MEDLINE | ID: mdl-9882641

ABSTRACT

Symbioses between chemoautotrophic bacteria and marine invertebrates living at deep-sea hydrothermal vents and other sulfide-rich environments function autotrophically by oxidizing hydrogen sulfide as an energy source and fixing carbon dioxide into organic compounds. For chemoautotrophy to support growth, these symbioses must be capable of inorganic nitrogen assimilation, a process that is not well understood in these or other aquatic symbioses. Pathways of inorganic nitrogen assimilation were investigated in several of these symbioses: the vent tubeworms Riftia pachyptila and Tevnia jerichonana, the vent bivalves Calyptogena magnifica and Bathymodiolus thermophilus, and the coastal bivalve Solemya velum. Nitrate reductase activity was detected in R. pachyptila, T. jerichonana and B. thermophilus, but not in C. magnifica and S. velum. This is evidence for nitrate utilization, either assimilation or respiration, by some vent species and is consistent with the high levels of nitrate availability at vents. The ammonia assimilation enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were detected in all symbioses tested, indicating that ammonia resulting from nitrate reduction or from environmental uptake can be incorporated into amino acids. A complicating factor is that GS and GDH are potentially of both host and symbiont origin, making it unclear which partner is involved in assimilation. GS, which is considered to be the primary ammonia-assimilating enzyme of autotrophs, was investigated further. Using a combination of molecular and biochemical approaches, host and symbiont GS were distinguished in the intact association. On the basis of Southern hybridizations, immunoreactivity, subunit size and thermal stability, symbiont GS was found to be a prokaryote GS. Host GS was distinct from prokaryote GS. The activities of host and symbiont GS were separated by anion-exchange chromatography and quantified. Virtually all activity in symbiont-containing tissue was due to symbiont GS in R. pachyptila, C. magnifica and B. thermophilus. In contrast, no symbiont GS activity was detected in the gill of S. velum, the predominant activity in this species appearing to be host GS. These findings suggest that ammonia is primarily assimilated by the symbionts in vent symbioses, whereas in S. velum ammonia is first assimilated by the host. The relationship between varying patterns of GS expression and host-symbiont nutritional exchange is discussed.

12.
Phys Rev Lett ; 74(18): 3616-3619, 1995 May 01.
Article in English | MEDLINE | ID: mdl-10058250
13.
Phys Rev A ; 51(4): R2691-R2694, 1995 Apr.
Article in English | MEDLINE | ID: mdl-9911997
14.
19.
SELECTION OF CITATIONS
SEARCH DETAIL
...