Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22280709

ABSTRACT

BackgroundStreptococcus pneumoniae interacts with numerous viral respiratory pathogens in the upper airway. It is unclear whether similar interactions occur with SARS-CoV-2. MethodsWe collected saliva specimens from working-age adults receiving SARS-CoV-2 molecular testing at outpatient clinics and via mobile community-outreach testing between July and November 2020 in Monterey County, California. Following bacterial culture enrichment, we tested for pneumococci by quantitative polymerase chain reaction (qPCR) targeting the lytA and piaB genes, and measured associations with SARS-CoV-2 infection via conditional logistic regression. ResultsAnalyses included 1,278 participants, with 564 enrolled in clinics and 714 enrolled through outreach-based testing. Prevalence of pneumococcal carriage was 9.2% (117/1,278) among all participants (11.2% [63/564] clinic-based testing; 7.6% [54/714] outreach testing). Prevalence of SARS-CoV-2 infection was 27.4% (32/117) among pneumococcal carriers and 9.6% (112/1,161) among non-carriers (adjusted odds ratio [aOR]: 2.73; 95% confidence interval: 1.58-4.69). Associations between SARS-CoV-2 infection and pneumococcal carriage were enhanced in the clinic-based sample (aOR=4.01 [2.08-7.75]) and among symptomatic participants (aOR=3.38 [1.35-8.40]), when compared to findings within the outreach-based sample and among asymptomatic participants. Adjusted odds of SARS-CoV-2 co-infection increased 1.24 (1.00-1.55)-fold for each 1-unit decrease in piaB qPCR CT value among pneumococcal carriers. Last, pneumococcal carriage modified the association of SARS-CoV-2 infection with recent exposure to a suspected COVID-19 case (aOR=7.64 [1.91-30.7] and 3.29 [1.94-5.59]) among pneumococcal carriers and non-carriers, respectively). ConclusionsAssociations of pneumococcal carriage detection and density with SARS-CoV-2 suggest a synergistic relationship in the upper airway. Longitudinal studies are needed to determine interaction mechanisms between pneumococci and SARS-CoV-2. Key pointsO_LIIn an adult ambulatory and community sample, SARS-CoV-2 infection was more prevalent among pneumococcal carriers than non-carriers. C_LIO_LIAssociations between pneumococcal carriage and SARS-CoV-2 infection were strongest among adults reporting acute symptoms and receiving SARS-CoV-2 testing in a clinical setting. C_LI

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20152959

ABSTRACT

Mechanisms underlying the acute respiratory distress syndrome (ARDS)-like clinical manifestations leading to deaths in patients who develop COVID-19 remain uncharacterized. While multiple factors could influence these clinical outcomes, we explored if differences in transmissibility and pathogenicity of SARS-CoV2 variants could contribute to these terminal clinical consequences of COVID-19. We analyzed 34,412 SARS-CoV2 sequences deposited in the Global Initiative for Sharing All Influenza Data (GISAID) SARS-CoV2 sequence database to determine if regional differences in circulating strain variants correlated with increased mortality in Europe, the United States, and California. We found two subclades descending from the Wuhan HU-1 strain that rapidly became dominant in Western Europe and the United States. These variants contained nonsynonymous nucleotide mutations in the Orf1ab segment encoding RNA-dependent RNA polymerase (C14408T), the spike protein gene (A23403G), and Orf1a (G25563T), which resulted in non-conservative amino acid substitutions P323L, D614G, and Q57H, respectively. In Western Europe, the A23403G-C14408T subclade dominated, while in the US, the A23403G-C14408T-G25563T mutant became the dominant strain in New York and parts of California. The high cumulative frequencies of both subclades showed inconsistent but significant association with high cumulative CFRs in some of the regions. When the frequencies of the subclades were analyzed by their 7-day moving averages across each epidemic, we found co-circulation of both subclades to temporally correlate with peak mortality periods. We postulate that in areas with high numbers of these co-circulating subclades, a person may get serially infected. The second infection may trigger a hyperinflammatory response similar to the antibody-dependent enhancement (ADE) response, which could explain the ARDS-like manifestations observed in people with co-morbidity, who may not mount sufficient levels of neutralizing antibodies against the first infection. Further studies are necessary but the implication of such a mechanism will need to be considered for all current COVID-19 vaccine designs.

SELECTION OF CITATIONS
SEARCH DETAIL
...