Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Health Informatics J ; 30(2): 14604582241259322, 2024.
Article in English | MEDLINE | ID: mdl-38855877

ABSTRACT

Patients with rare diseases commonly suffer from severe symptoms as well as chronic and sometimes life-threatening effects. Not only the rarity of the diseases but also the poor documentation of rare diseases often leads to an immense delay in diagnosis. One of the main problems here is the inadequate coding with common classifications such as the International Statistical Classification of Diseases and Related Health Problems. Instead, the ORPHAcode enables precise naming of the diseases. So far, just few approaches report in detail how the technical implementation of the ORPHAcode is done in clinical practice and for research. We present a concept and implementation of storing and mapping of ORPHAcodes. The Transition Database for Rare Diseases contains all the information of the Orphanet catalog and serves as the basis for documentation in the clinical information system as well as for monitoring Key Performance Indicators for rare diseases at the hospital. The five-step process (especially using open source tools and the DataVault 2.0 logic) for set-up the Transition Database allows the approach to be adapted to local conditions as well as to be extended for additional terminologies and ontologies.


Subject(s)
Databases, Factual , Documentation , Rare Diseases , Rare Diseases/classification , Rare Diseases/diagnosis , Humans , Documentation/methods , Documentation/standards , International Classification of Diseases/trends , International Classification of Diseases/standards
2.
J Clin Immunol ; 44(6): 129, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773012

ABSTRACT

Mutations in genes of the DNA polymerase complex have been linked to impaired immunological function next to distinct syndromic features. Biallelic mutations in PRIM1 are associated with a primordial dwarfism syndrome with variable hypogammaglobulinemia. The disease is mostly lethal in infancy due to pulmonary infections as well as hepatic cirrhosis. We studied 3 novel patients with PRIM1-deficiency with a focus on immunological consequences. All three shared dysmorphic features including a prominent forehead, triangular face and bilateral cryptorchidism. P1 carried the novel homozygous PRIM1 splice variant c.103+2T>G, allowing residual protein expression and associated with a mild clinical phenotype. P2 and P3 carried the known homozygous variant c.638+36C>G and died in infancy. Paradoxically, B cell lymphopenia was most pronounced in P1. No other significant lymphocyte abnormalities were detected. Interestingly, all 3 patients showed variable, but intermittently excessive Type I interferon signatures. In summary, the B-cell deficiency in PRIM1-deficiency is markedly variable and the severity of syndromic manifestations is not predictive of the immunological phenotype. We highlight a potential contribution of pathological type I interferon activation to disease pathogenesis which warrants further investigations.


Subject(s)
Alleles , B-Lymphocytes , Mutation , Child, Preschool , Female , Humans , Infant , Male , B-Lymphocytes/immunology , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis , Interferon Type I/metabolism , Mutation/genetics , Phenotype
3.
Sci Adv ; 10(9): eadk0820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427731

ABSTRACT

Chronic and aberrant nucleic acid sensing causes type I IFN-driven autoimmune diseases, designated type I interferonopathies. We found a significant reduction of regulatory T cells (Tregs) in patients with type I interferonopathies caused by mutations in ADAR1 or IFIH1 (encoding MDA5). We analyzed the underlying mechanisms using murine models and found that Treg-specific deletion of Adar1 caused peripheral Treg loss and scurfy-like lethal autoimmune disorders. Similarly, knock-in mice with Treg-specific expression of an MDA5 gain-of-function mutant caused apoptosis of peripheral Tregs and severe autoimmunity. Moreover, the impact of ADAR1 deficiency on Tregs is multifaceted, involving both MDA5 and PKR sensing. Together, our results highlight the dysregulation of Treg homeostasis by intrinsic aberrant RNA sensing as a potential determinant for type I interferonopathies.


Subject(s)
Autoimmune Diseases , Nucleic Acids , Humans , Mice , Animals , Autoimmunity , RNA , T-Lymphocytes, Regulatory , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
4.
Sci Immunol ; 9(92): eadi9575, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38207015

ABSTRACT

Hyperactive TLR7 signaling has long been appreciated as driver of autoimmune disease in mouse models. Recently, gain-of-function mutations in TLR7 were identified as a monogenic cause of human lupus. TLR7 is an intracellular transmembrane receptor, sensing RNA breakdown products within late endosomes. Here, we show that endosome dysfunction leads to unrestricted TLR7 signaling and is associated with human lupus. The late endosomal BORC complex together with the small GTPase Arl8b controls intracellular TLR7 levels by regulating receptor turnover. This requires a direct interaction between the TLR7-associated trafficking factor Unc93b1 and Arl8b. We identified an UNC93B1 mutation in a patient with childhood-onset lupus, which results in reduced BORC interaction and endosomal TLR7 accumulation. Therefore, a failure to control TLR7 turnover is sufficient to break immunological tolerance to nucleic acids. Our results highlight the importance of an intact endomembrane system in preventing pathological TLR7 signaling and autoimmune disease.


Subject(s)
Autoimmune Diseases , Toll-Like Receptor 7 , Mice , Animals , Humans , Child , Toll-Like Receptor 7/genetics , Signal Transduction , Protein Transport , Mutation
5.
Sci Immunol ; 9(92): eadi9769, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38207055

ABSTRACT

UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.


Subject(s)
Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Mice , Animals , Humans , Toll-Like Receptor 7/genetics , Autoimmunity/genetics , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 8 , Toll-Like Receptor 3/metabolism , Lupus Erythematosus, Systemic/genetics , Membrane Transport Proteins
6.
Open Forum Infect Dis ; 11(1): ofad641, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38179103

ABSTRACT

Genetic defects in the interferon (IFN) system or neutralizing autoantibodies against type I IFNs contribute to severe COVID-19. Such autoantibodies were proposed to affect post-COVID-19 syndrome (PCS), possibly causing persistent fatigue for >12 weeks after confirmed SARS-CoV-2 infection. In the current study, we investigated 128 patients with PCS, 21 survivors of severe COVID-19, and 38 individuals who were asymptomatic. We checked for autoantibodies against IFN-α, IFN-ß, and IFN-ω. Few patients with PCS had autoantibodies against IFNs but with no neutralizing activity, indicating a limited role of type I IFNs in PCS pathogenesis. In a subset consisting of 28 patients with PCS, we evaluated IFN-stimulated gene activity and showed that it did not correlate with fatigue. In conclusion, impairment of the type I IFN system is unlikely responsible for adult PCS.

7.
Pediatr Rheumatol Online J ; 22(1): 9, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178067

ABSTRACT

BACKGROUND: STING-associated vasculopathy with onset in infancy (SAVI) is a rare type I interferonopathy caused by heterozygous variants in the STING gene. In SAVI, STING variants confer a gain-of-function which causes overactivation of type I interferon (IFN) signaling leading to autoinflammation and various degrees of immunodeficiency and autoimmunity. CASE PRESENTATION: We report the case of a 5 year old child and his mother, both of whom presented with systemic inflammatory symptoms yet widely varying organ involvement, disease course and therapeutic response. Genetic testing revealed a heterozygous STING variant, R281Q, in the child and his mother that had previously been associated with SAVI. However, in contrast to previously reported SAVI cases due to the R281Q variant, our patients showed an atypical course of disease with alopecia totalis in the child and a complete lack of lung involvement in the mother. CONCLUSIONS: Our findings demonstrate the phenotypic breadth of clinical SAVI manifestations. Given the therapeutic benefit of treatment with JAK inhibitors, early genetic testing for SAVI should be considered in patients with unclear systemic inflammation involving cutaneous, pulmonary, or musculoskeletal symptoms, and signs of immunodeficiency and autoimmunity.


Subject(s)
Immunologic Deficiency Syndromes , Interferon Type I , Vascular Diseases , Child, Preschool , Humans , Inflammation/genetics , Interferon Type I/genetics , Lung , Mutation , Vascular Diseases/genetics , Male , Female
8.
Immunity ; 57(1): 68-85.e11, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38141610

ABSTRACT

Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.


Subject(s)
Signal Transduction , Thromboplastin , Animals , Mice , Inflammation , Interferon-alpha , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Thromboplastin/genetics
9.
Front Immunol ; 14: 1253279, 2023.
Article in English | MEDLINE | ID: mdl-37809086

ABSTRACT

Cutaneous lupus erythematosus (CLE), the main manifestation of systemic lupus erythematosus (SLE), is driven by type I interferons (IFNs) and often only partially responds to conventional therapies. Treatment of seven SLE patients with the monoclonal antibody anifrolumab induced fast and sustained remission of previously refractory CLE lesions, beginning within the first weeks of treatment. Decline in CLASI-A score was paralleled by a reduction in IFN score determined by mRNA expression of seven IFN-stimulated genes (ISGs) in blood. These data suggest that a subset of ISGs could be a valuable biomarker in CLE.


Subject(s)
Interferon Type I , Lupus Erythematosus, Cutaneous , Lupus Erythematosus, Systemic , Humans , Receptors, Interferon , Lupus Erythematosus, Cutaneous/diagnosis , Lupus Erythematosus, Cutaneous/drug therapy , Antibodies, Monoclonal/therapeutic use , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/drug therapy
10.
Pediatr Rheumatol Online J ; 21(1): 104, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726751

ABSTRACT

BACKGROUND: Juvenile dermatomyositis (jDM) is the most common idiopathic inflammatory myopathy of childhood. Amyopathic or hypomyopathic courses have been described. CASE PRESENTATION: We present the case of a 4-year-old patient with MDA5 antibody positive jDM and interstitial lung disease. In our patient, typical symptoms of jDM with classical skin lesions, arthritis, proximal muscle weakness, and ulcerative calcifications were observed. Due to the severity of the disease and the pulmonary changes, therapy with the Janus kinase (JAK) inhibitor ruxolitinib was added to the therapy with corticosteroids, intravenous immunoglobulins (IVIG) and hydroxychloroquine leading to a fast and sustained remission. CONCLUSION: While there is growing evidence that JAK inhibition is a promising therapeutic option in jDM our case report shows that this approach may also be effective in MDA5-positive jDM with high risk features.


Subject(s)
Arthritis , Dermatomyositis , Janus Kinase Inhibitors , Myositis , Child, Preschool , Humans , Dermatomyositis/drug therapy , Immunoglobulins, Intravenous/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Risk Factors
11.
Clin Immunol ; 256: 109777, 2023 11.
Article in English | MEDLINE | ID: mdl-37741518

ABSTRACT

C-terminal variants in CDC42 encoding cell division control protein 42 homolog underlie neonatal-onset cytopenia, autoinflammation, rash, and hemophagocytic lymphohistiocytosis (NOCARH). Pyrin inflammasome hyperactivation has been shown to contribute to disease pathophysiology. However, mortality of NOCARH patients remains high despite inflammasome-focused treatments. Here, we demonstrate in four NOCARH patients from three families that cell-intrinsic activation of type I interferon (IFN) is a previously unrecognized driver of autoinflammation in NOCARH. Our data show that aberrant innate immune activation is caused by sensing of cytosolic nucleic acids released from mitochondria, which exhibit disturbances in integrity and dynamics due to CDC42 dysfunction. In one of our patients, treatment with the Janus kinase inhibitor ruxolitinib led to complete remission, indicating that inhibition of type I IFN signaling may have an important role in the management of autoinflammation in patients with NOCARH.


Subject(s)
Interferon Type I , Lymphohistiocytosis, Hemophagocytic , Humans , Infant, Newborn , cdc42 GTP-Binding Protein , Inflammasomes/genetics , Lymphohistiocytosis, Hemophagocytic/etiology , Nitriles , Syndrome
12.
J Allergy Clin Immunol ; 152(5): 1336-1344.e5, 2023 11.
Article in English | MEDLINE | ID: mdl-37544411

ABSTRACT

BACKGROUND: Genetic defects in components of inflammasomes can cause autoinflammation. Biallelic loss-of-function mutations in dipeptidyl peptidase 9 (DPP9), a negative regulator of the NLRP1 and CARD8 inflammasomes, have recently been shown to cause an inborn error of immunity characterized by pancytopenia, skin manifestations, and increased susceptibility to infections. OBJECTIVE: We sought to study the molecular basis of autoinflammation in a patient with severe infancy-onset hyperinflammation associated with signs of fulminant hemophagocytic lymphohistiocytosis. METHODS: Using heterologous cell models as well as patient cells, we performed genetic, immunologic, and molecular investigations to identify the genetic cause and to assess the impact of the identified mutation on inflammasome activation. RESULTS: The patient exhibited pancytopenia with decreased neutrophils and T, B, and natural killer cells, and markedly elevated levels of lactate dehydrogenase, ferritin, soluble IL-2 receptor, and triglycerides. In addition, serum levels of IL-1ß and IL-18 were massively increased, consistent with inflammasome activation. Genetic analysis revealed a previously undescribed de novo mutation in DPP9 (c.755G>C, p.Arg252Pro) affecting a highly conserved amino acid residue. The mutation led to destabilization of the DPP9 protein as shown in transiently transfected HEK293T cells and in patient-derived induced pluripotent stem cells. Using functional inflammasome assays in HEK293T cells, we demonstrated that mutant DPP9 failed to restrain the NLRP1 and CARD8 inflammasomes, resulting in constitutive inflammasome activation. These findings suggest that the Arg252Pro DPP9 mutation acts in a dominant-negative manner. CONCLUSIONS: A de novo mutation in DPP9 leads to severe infancy-onset autoinflammation because of unleashed inflammasome activation.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Pancytopenia , Humans , CARD Signaling Adaptor Proteins/genetics , Inflammasomes/genetics , Inflammasomes/metabolism , Lymphohistiocytosis, Hemophagocytic/genetics , HEK293 Cells , Apoptosis Regulatory Proteins/genetics , Mutation , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Neoplasm Proteins/genetics
13.
Orphanet J Rare Dis ; 18(1): 93, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37098531

ABSTRACT

PURPOSE: The transition process from paediatric/adolescent to adult medical care settings is of utmost importance for the future health of adolescents with chronic diseases and poses even more difficulties in the context of rare diseases (RDs). Paediatric care teams are challenged to deliver adolescent-appropriate information and structures. Here we present a structured transition pathway which is patient-focused and adoptable for different RDs. METHODS: The transition pathway for adolescents 16 years and older was developed and implemented as part of a multi-centre study in 10 university hospitals in Germany. Key elements of the pathway included: assessment of patients' disease-related knowledge and needs, training/educational and counselling sessions, a structured epicrisis and a transfer appointment jointly with the paediatric and adult specialist. Specific care coordinators from the participating university hospitals were in charge of organization and coordination of the transition process. RESULTS: Of a total of 292 patients, 286 completed the pathway. Deficits in disease-specific knowledge were present in more than 90% of participants. A need for genetic or socio-legal counselling was indicated by > 60%. A mean of 2.1 training sessions per patient were provided over a period of almost 1 year, followed by the transfer to adult care in 267 cases. Twelve patients remained in paediatric care as no adult health care specialist could be identified. Targeted training and counselling resulted in improved disease-specific knowledge and contributed to empowering of patients. CONCLUSION: The described transition pathway succeeds to improve health literacy in adolescents with RDs and can be implemented by paediatric care teams in any RD specialty. Patient empowerment was mainly achieved by individualized training and counselling.


Subject(s)
Patient Participation , Rare Diseases , Humans , Adolescent , Child , Chronic Disease , Germany
14.
J Clin Immunol ; 43(6): 1289-1301, 2023 08.
Article in English | MEDLINE | ID: mdl-37084016

ABSTRACT

Patient registries are a very important and essential tool for investigating rare diseases, as most physicians only see a limited number of cases during their career. Diseases of multi-organ autoimmunity and autoinflammation are especially challenging, as they are characterized by diverse clinical phenotypes and highly variable expressivity. The GAIN consortium (German multi-organ Auto Immunity Network) developed a dataset addressing these challenges. ICD-11, HPO, and ATC codes were incorporated to document various clinical manifestations and medications with a defined terminology. The GAIN dataset comprises detailed information on genetics, phenotypes, medication, and laboratory values. Between November 2019 and July 2022, twelve centers from Europe have registered 419 patients with multi-organ autoimmunity or autoinflammation. The median age at onset of symptoms was 13 years (IQR 3-28) and the median delay from onset to diagnosis was 5 years (IQR 1-14). Of 354 (84.5%) patients who were genetically tested, 248 (59.2%) had a defined monogenetic cause. For 87 (20.8%) patients, no mutation was found and for 19 (4.5%), the result was pending. The most common gene affected was NFkB1 (48, 11.5%), and the second common was CTLA4 (40, 9.5%), both genetic patient groups being fostered by specific research projects within GAIN. The GAIN registry may serve as a valuable resource for research in the inborn error of immunity community by providing a platform for etiological and diagnostic research projects, as well as observational trials on treatment options.


Subject(s)
Autoimmunity , Humans , Autoimmunity/genetics , Prospective Studies , Europe , Mutation/genetics , Registries
15.
Article in German | MEDLINE | ID: mdl-36239768

ABSTRACT

The ICD-10-GM coding system used in the German healthcare system only captures a minority of rare disease diagnoses. Therefore, information on the incidence and prevalence of rare diseases as well as necessary (financial) resources for the expert care required for evidence-based decisions by health insurers, care providers, and politicians are lacking. Furthermore, the missing information complicates and sometimes even precludes the generation of scientific knowledge on rare diseases. Therefore, starting in 2023, all in-patient cases in Germany with a rare disease diagnosis must be coded by an ORPHAcode using the Alpha-ID-SE file.The file Alpha-ID-SE links the ICD-10-GM codes to the internationally established ORPHAcodes for rare diseases. Commercially available software tools progressively support the coding of rare diseases. In several centers for rare diseases linked to university hospitals, IT tools and procedures were established to realize a complete coding of rare diseases. These include financial incentives for the institutions providing rare disease codes, systematic queries asking for rare disease codes during the coding process, and a semi-automated coding process for all patients with a rare disease previously seen at the institution. A combination of the different approaches probably results in the most complete coding.To get the complete picture of rare disease epidemiology and care requirements, a specific and unique coding of out-patient cases is also desirable. Furthermore, a structured reporting of phenotype is required, especially for complex rare diseases and for yet undiagnosed cases.


Subject(s)
International Classification of Diseases , Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/therapy , Germany/epidemiology , Delivery of Health Care , Health Facilities
16.
Nat Rev Rheumatol ; 18(12): 681-682, 2022 12.
Article in English | MEDLINE | ID: mdl-36203062

Subject(s)
RNA , Humans
17.
Front Immunol ; 13: 1029423, 2022.
Article in English | MEDLINE | ID: mdl-36275728

ABSTRACT

Gain-of-function variants in the stimulator of interferon response cGAMP interactor 1 (STING1) gene cause STING-Associated Vasculopathy with onset in Infancy (SAVI). Previously, only heterozygous and mostly de novo STING1 variants have been reported to cause SAVI. Interestingly, one variant that only leads to SAVI when homozygous, namely c.841C>T p.(Arg281Trp), has recently been described. However, there are no entries in public databases regarding an autosomal recessive pattern of inheritance. Here, we report four additional unrelated SAVI patients carrying c.841C>T in homozygous state. All patients had interstitial lung disease and displayed typical interferon activation patterns. Only one child displayed cutaneous vasculitis, while three other patients presented with a relatively mild SAVI phenotype. Steroid and baricitinib treatment had a mitigating effect on the disease phenotype in two cases, but failed to halt disease progression. Heterozygous c.841C>T carriers in our analysis were healthy and showed normal interferon activation. Literature review identified eight additional cases with autosomal recessive SAVI caused by c.841C>T homozygosity. In summary, we present four novel and eight historic cases of autosomal recessive SAVI. We provide comprehensive clinical data and show treatment regimens and clinical responses. To date, SAVI has been listed as an exclusively autosomal dominant inherited trait in relevant databases. With this report, we aim to raise awareness for autosomal recessive inheritance in this rare, severe disease which may aid in early diagnosis and development of optimized treatment strategies.


Subject(s)
Skin Diseases, Vascular , Vascular Diseases , Humans , Membrane Proteins/genetics , Mutation , Vascular Diseases/genetics , Interferons/genetics
18.
Stem Cell Res ; 64: 102912, 2022 10.
Article in English | MEDLINE | ID: mdl-36115319

ABSTRACT

Mutations in SAMHD1, encoding SAM and HD domain-containing protein 1, cause Aicardi-Goutières syndrome (AGS) 5, an infancy-onset autoinflammatory disease characterized by neurodegeneration and chronic activation of type I interferon. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts and peripheral blood mononuclear cells from three AGS patients with biallelic SAMHD1 mutations. These cell lines provide a valuable source to study disease mechanisms and to assess therapeutic molecules.


Subject(s)
Induced Pluripotent Stem Cells , Interferon Type I , Monomeric GTP-Binding Proteins , Humans , SAM Domain and HD Domain-Containing Protein 1/genetics , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Mutation/genetics , Interferon Type I/genetics , Interferon Type I/metabolism
19.
Mol Cell ; 82(19): 3712-3728.e10, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36150385

ABSTRACT

Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.


Subject(s)
Interferon Type I , RNA, Double-Stranded , Antiviral Agents , Autoimmune Diseases of the Nervous System , Exonucleases/genetics , Humans , Immunity, Innate/genetics , Interferon Type I/genetics , Nervous System Malformations , RNA, Double-Stranded/genetics , SAM Domain and HD Domain-Containing Protein 1/genetics
20.
Stem Cell Res ; 64: 102895, 2022 10.
Article in English | MEDLINE | ID: mdl-36027857

ABSTRACT

Mutations in TREX1, encoding three prime repair exonuclease 1, cause Aicardi-Goutières syndrome (AGS) 1, an autoinflammatory disease characterized by neurodegeneration and constitutive activation of the antiviral cytokine type I interferon. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts from two AGS patients with biallelic TREX1 mutations. These cell lines offer a unique resource to investigate disease processes in a cell-type specific manner.


Subject(s)
Induced Pluripotent Stem Cells , Interferon Type I , Humans , Induced Pluripotent Stem Cells/metabolism , Exodeoxyribonucleases/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Mutation/genetics , Interferon Type I/genetics , Cytokines , Antiviral Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...