Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
EBioMedicine ; 102: 105025, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458111

ABSTRACT

BACKGROUND: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).


Subject(s)
Asthma , MicroRNAs , Child , Humans , Cross-Sectional Studies , Lung/metabolism , MicroRNAs/metabolism , Metabolomics
2.
Ann Am Thorac Soc ; 21(2): 279-286, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38054759

ABSTRACT

Rationale: The role and timing of vitamin D supplementation in the prevention of asthma has not been fully elucidated. Objective: To describe the association between prenatal and postnatal vitamin D with offspring asthma outcomes in participants of the Vitamin D Antenatal Asthma Reduction Trial. Methods: We classified 748 mother-offspring pairs into four groups based on the mother's randomization to receive high-dose versus low-dose (4,400 IU vs. 400 IU) vitamin D supplementation during pregnancy and the offspring parent-reported high-dose versus low-dose (⩾400 IU vs. <400 IU) vitamin D supplementation as estimated by intake of vitamin D drops or infant formula. We used logistic regression to test the association of the four vitamin D exposure groups-"mother-low/infant-low (reference)," "mother-high/infant-high," "mother-high/infant-low," and "mother-low/infant-high"-with offspring asthma and/or recurrent wheeze at age 3 years, active asthma at age 6 years, and atopic asthma at age 6 years. Results: The risk of asthma and/or recurrent wheeze at 3 years was lowest in the mother-high/infant-low group (adjusted odds ratio vs. mother-low/infant-low, 0.39; 95% confidence interval, 0.16-0.88, P = 0.03). When stratifying by history of exclusive breastfeeding until age 4 months, the protective effect in the mother-high/infant-low group was seen only among exclusively breastfed infants (odds ratio vs. mother-low/infant-low, 0.19; 95% confidence interval, 0.04-0.68; P = 0.02). We did not observe any significant associations with active or atopic asthma at age 6 years. Conclusions: We observe that high-dose prenatal and low-dose postnatal vitamin D supplementation may be associated with reduced offspring asthma or recurrent wheeze by age 3 years, but this association may be confounded by the protective effect of breastfeeding.


Subject(s)
Asthma , Vitamin D , Infant , Female , Humans , Pregnancy , Child, Preschool , Child , Dietary Supplements , Vitamins , Asthma/epidemiology , Asthma/prevention & control , Family , Respiratory Sounds
3.
Allergy ; 79(2): 404-418, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014461

ABSTRACT

BACKGROUND: While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS: We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS: We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION: This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.


Subject(s)
Asthma , Sphingolipids , Child , Humans , Sphingolipids/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Ceramides/metabolism , Asthma/etiology , Asthma/genetics , Risk Factors
4.
medRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014043

ABSTRACT

The influence of genotype on defining the human gut microbiome has been extensively studied, but definite conclusions have not yet been found. To fill this knowledge gap, we leverage data from children enrolled in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) from 6 months to 8 years old. We focus on a pool of 12 genes previously found to be associated with the gut microbiome in independent studies, establishing a Bonferroni corrected significance level of p-value < 2.29 × 10 -6 . We identified significant associations between SNPs in the FHIT gene (known to be associated with obesity and type 2 diabetes) and obesity-related microbiome features, and the children's BMI through their childhood. Based on these associations, we defined a set of SNPs of interest and a set of taxa of interest. Taking a multi-omics approach, we integrated plasma metabolome data into our analysis and found simultaneous associations among children's BMI, the SNPs of interest, and the taxa of interest, involving amino acids, lipids, nucleotides, and xenobiotics. Using our association results, we constructed a quadripartite graph where each disjoint node set represents SNPs in the FHIT gene, microbial taxa, plasma metabolites, or BMI measurements. Network analysis led to the discovery of patterns that identify several genetic variants, microbial taxa and metabolites as new potential markers for obesity, type 2 diabetes, or insulin resistance risk.

5.
iScience ; 26(12): 108311, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38025771

ABSTRACT

The early life microbiome plays an important role in developmental and long-term health outcomes. However, it is unknown whether adverse pregnancy complications affect the offspring's gut microbiome postnatally and in early years. In a longitudinal cohort with a five-year follow-up of mother-child pairs affected by preeclampsia (PE) or spontaneous preterm birth (sPTB), we evaluated offspring gut alpha and beta diversity as well as taxa abundances considering factors like breastfeeding and mode of delivery. Our study highlights a trend where microbiome diversity exhibits comparable development across adverse and normal pregnancies. However, specific taxa at genus level emerge with distinctive abundances, showing enrichment and/or depletion over time in relation to PE or sPTB. These findings underscore the potential for certain adverse pregnancy complications to induce alterations in the offspring's microbiome over the course of early life. The implications of these findings on the immediate and long-term health of offspring should be investigated in future studies.

7.
Nutrients ; 15(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37432235

ABSTRACT

Shifts in the maternal gut microbiome and vitamin D deficiency during pregnancy have been associated, separately, with health problems for both the mother and the child. Yet, they have rarely been studied simultaneously. Here, we analyzed the gut microbiome (from stool samples obtained in late pregnancy) and vitamin D level (from blood samples obtained both in early and late pregnancy) data of pregnant women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), a randomized controlled trial of vitamin D supplementation during pregnancy, to investigate the association of vitamin D status on the pregnant women's microbiome. To find associations, we ran linear regressions on alpha diversity measures, PERMANOVA tests on beta diversity distances, and used the ANCOM-BC and Maaslin2 algorithms to find differentially abundant taxa. Analyses were deemed significant using a cut-off p-value of 0.05. We found that gut microbiome composition is associated with the vitamin D level in early pregnancy (baseline), the maternal gut microbiome does not show a shift in response to vitamin D supplementation during pregnancy, and that the genus Desulfovibrio is enriched in women without a substantial increase in vitamin D level between the first and the third trimesters of pregnancy. We conclude that increasing the vitamin D level during pregnancy could be protective against the growth of sulfate-reducing bacteria such as Desulfovibrio, which has been associated with chronic intestinal inflammatory disorders. More in-depth investigations are needed to confirm this hypothesis.


Subject(s)
Gastrointestinal Microbiome , Vitamin D , Child , Female , Humans , Pregnancy , Vitamins , Mothers , Dietary Supplements
8.
Am J Reprod Immunol ; 90(2): e13746, 2023 08.
Article in English | MEDLINE | ID: mdl-37491932

ABSTRACT

PROBLEM: Promotion of a healthy pregnancy is dependent on a coordinated immune response that minimizes inflammation at the maternal-fetal interface. Few studies investigated the effect of fetal sex on proinflammatory biomarkers during pregnancy and whether maternal race could impact this association. We aimed to examine whether fetal sex could, independently of maternal race/ethnicity and the condition of pregnancy (normal vs. complicated), impact inflammatory markers (C-reactive protein [CRP] and interleukin-8 [IL-8] levels) in early and late pregnancy. METHODS OF STUDY: This study was a cohort analysis using prospectively collected data from pregnant women who participated in the Vitamin Antenatal Asthma Reduction Trial (VDAART, N = 816). Maternal serum CRP and IL-8 levels were measured in early and late pregnancy (10-18 and 32-38 weeks of gestation, respectively). Five hundred and twenty-eight out of 816 pregnant women who participated in the trial had available CRP and IL-8 measurements at both study time points. We examined the association of fetal sex with early and late CRP and IL-8 levels and their paired sample difference. We further investigated whether maternal race/ethnicity, pregnancy complications (i.e., preeclampsia and gestational diabetes), and early pregnancy body mass index (BMI) could affect the association between these two biomarkers and fetal sex adjusting for potential confounders. For this purpose, we used generalized linear and logistic regression models on log-normalized early and late CRP and IL-8 levels as well as their split at median to form high and low groups. RESULTS: Women pregnant with male fetuses (266/528 = 56.5%) had higher CRP levels in early to mid-pregnancy (ß = .18: 95% confidence interval [CI]: CI = 0.03-0.32; p = .02). Twenty-seven percent (143/528) of the study subjects were Hispanic. Hispanic African American [AA] women and women of races other than White and AA had higher levels of CRP at early to mid-pregnancy compared with White women (ß = .57; 95% CI: 0.17-0.97; p < .01 and ß = .27; 95% CI: 0.05-0.48; p = .02, respectively). IL-8 levels were not associated with fetal sex in early and late pregnancy (p's > .05). Other factors such as gestational diabetes and early pregnancy BMI were associated with higher CRP levels and higher CRP and IL-8 levels, respectively. Dichotomizing log-normalized cytokine levels at the median in a sensitivity analysis, women with male fetuses had lower odds of high (above-median) IL-8 levels at early pregnancy. Also, women with races other than AA and White carrying male fetuses had higher odds of having high (above-median) late-pregnancy CRP and early-pregnancy IL-8 levels (adjusted odds ratio [aOR] = 3.80, 95% CI: 0.24-1.23; p = .02 and aOR = 3.57; 95% CI: 0.23-1.03; p = .02, respectively). Of the pregnancy complications, women with gestational diabetes mellitus had a higher paired difference of early and late pregnancy CRP levels (ß = .38; 95% CI: 0.09-0.68; p = .01), but no difference in IL-8 levels (p's > .05). No associations between the inflammatory markers and preeclampsia were found. CONCLUSION: Fetal sex is associated with CRP in early pregnancy and an association with IL-8 in early pregnancy is implied. Our study further indicates that maternal race/ethnicity could be a contributing factor in the relationship between fetal sex and inflammatory responses during pregnancy. However, the specificity and level of the contribution might vary by type of cytokine, pregnancy stage, and other confounding factors such as BMI that may impact these associations.


Subject(s)
Diabetes, Gestational , Pre-Eclampsia , Pregnancy Complications , Pregnancy , Female , Male , Humans , C-Reactive Protein/analysis , Ethnicity , Interleukin-8 , Cytokines , Biomarkers
9.
Pediatr Res ; 94(6): 2085-2091, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37479746

ABSTRACT

BACKGROUND: We aimed to understand the association between maternal stress in the first year of life and childhood body mass index (BMI) from 2 to 4 years of age in a large, prospective United States-based consortium of cohorts. METHODS: We used data from the Environmental influences on Child Health Outcomes program. The main exposure was maternal stress in the first year of life measured with the Perceived Stress Scale (PSS). The main outcome was the first childhood BMI percentile after age 2 until age 4 years. We used an adjusted linear mixed effects model to examine associations between BMI and PSS quartile. RESULTS: The mean BMI percentile in children was 59.8 (SD 30) measured at 3.0 years (SD 1) on average. In both crude models and models adjusted for maternal BMI, age, race, ethnicity, infant birthweight, and health insurance status, no linear associations were observed between maternal stress and child BMI. CONCLUSIONS: Among 1694 maternal-infant dyads, we found no statistically significant relationships between maternal perceived stress in the first year of life and child BMI after 2 through 4 years. IMPACT: Although existing literature suggests relationships between parental stress and childhood BMI, we found no linear associations between maternal stress in the first year of life and childhood BMI at 2-4 years of age among participants in ECHO cohorts. Higher maternal stress was significantly associated with Hispanic ethnicity, Black race, and public health insurance. Our analysis of a large, nationally representative sample challenges assumptions that maternal stress in the first year of life, as measured by a widely used scale, is associated with offspring BMI.


Subject(s)
Outcome Assessment, Health Care , Infant , Humans , Child , Child, Preschool , United States/epidemiology , Body Mass Index , Prospective Studies , Risk Factors , Birth Weight
10.
Nutrients ; 15(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242299

ABSTRACT

Associations of omega-3 fatty acids (n-3) with allergic diseases are inconsistent, perhaps in part due to genetic variation. We sought to identify and validate genetic variants that modify associations of n-3 with childhood asthma or atopy in participants in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) and the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC). Dietary n-3 was derived from food frequency questionnaires and plasma n-3 was measured via untargeted mass spectrometry in early childhood and children aged 6 years old. Interactions of genotype with n-3 in association with asthma or atopy at age 6 years were sought for six candidate genes/gene regions and genome-wide. Two SNPs in the region of DPP10 (rs958457 and rs1516311) interacted with plasma n-3 at age 3 years in VDAART (p = 0.007 and 0.003, respectively) and with plasma n-3 at age 18 months in COPSAC (p = 0.01 and 0.02, respectively) in associationwith atopy. Another DPP10 region SNP, rs1367180, interacted with dietary n-3 at age 6 years in VDAART (p = 0.009) and with plasma n-3 at age 6 years in COPSAC (p = 0.004) in association with atopy. No replicated interactions were identified for asthma. The effect of n-3 on reducing childhood allergic disease may differ by individual factors, including genetic variation in the DPP10 region.


Subject(s)
Asthma , Fatty Acids, Omega-3 , Hypersensitivity, Immediate , Hypersensitivity , Child , Humans , Child, Preschool , Female , Pregnancy , Infant , Prospective Studies , Hypersensitivity, Immediate/genetics , Asthma/genetics , Genotype , Vitamin D , Vitamins , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics
11.
medRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066333

ABSTRACT

Shifts in the maternal gut microbiome and vitamin D deficiency during pregnancy have been associated, separately, with health problems for both the mother and the child. Yet, they have rarely been studied simultaneously. Here, we analyzed gut microbiome (from stool samples obtained in late pregnancy) and vitamin D level (from blood samples obtained both in early and late pregnancy) data of pregnant women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), a randomized controlled trial of vitamin D supplementation during pregnancy, to investigate the association of vitamin D status on the pregnant women’s microbiome. To find associations we ran linear regressions on alpha diversity measures, PERMANOVA tests on beta diversity distances, and used the ANCOM-BS and Maaslin2 algorithms to find differentially abundant taxa. Analyses were deemed significant using a cut-off p-value of 0.05. We found that gut microbiome composition is associated with the vitamin D level in early pregnancy (baseline), the maternal gut microbiome does not show a shift in response to vitamin D supplementation during pregnancy, and that the genus Desulfovibrio is enriched in women without a substantial increase in vitamin D level between the first and the third trimesters of pregnancy. We conclude that increasing the vitamin D level during pregnancy could be protective against the growth of sulfate-reducing bacteria such as Desulfovibrio , which has been associated with chronic intestinal inflammatory disorders. More in-depth investigations are needed to confirm this hypothesis.

12.
EBioMedicine ; 90: 104491, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36868051

ABSTRACT

BACKGROUND: It has been widely recognized that a critical time window for neurodevelopment occurs in early life and the host's gut microbiome plays an important role in neurodevelopment. Following recent demonstrations that the maternal prenatal gut microbiome influences offspring brain development in murine models, we aim to explore whether the critical time window for the association between the gut microbiome and neurodevelopment is prenatal or postnatal for human. METHODS: Here we leverage a large-scale human study and compare the associations between the gut microbiota and metabolites from mothers during pregnancy and their children with the children's neurodevelopment. Specifically, using multinomial regression integrated in Songbird, we assessed the discriminating power of the maternal prenatal and child gut microbiome for children's neurodevelopment at early life as measured by the Ages & Stages Questionnaires (ASQ). FINDINGS: We show that the maternal prenatal gut microbiome is more relevant than the children's gut microbiome to the children's neurodevelopment in the first year of life (maximum Q2 = 0.212 and 0.096 separately using the taxa at the class level). Moreover, we found that Fusobacteriia is more associated with high fine motor skills in ASQ in the maternal prenatal gut microbiota but become more associated with low fine motor skills in the infant gut microbiota (rank = 0.084 and -0.047 separately), suggesting the roles of the same taxa with respect to neurodevelopment can be opposite at the two stages of fetal neurodevelopment. INTERPRETATION: These findings shed light, especially in terms of timing, on potential therapeutic interventions to prevent neurodevelopmental disorders. FUNDING: This work was supported by the National Institutes of Health (grant numbers: R01AI141529, R01HD093761, RF1AG067744, UH3OD023268, U19AI095219, U01HL089856, R01HL141826, K08HL148178, K01HL146980), and the Charles A. King Trust Postdoctoral Fellowship.


Subject(s)
Gastrointestinal Microbiome , Neurodevelopmental Disorders , Prenatal Exposure Delayed Effects , Infant , Pregnancy , Child , Female , Humans , Animals , Mice , Child Development , Mothers , Neurodevelopmental Disorders/etiology , Fetus
13.
JAMA Pediatr ; 177(4): 401-409, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36780186

ABSTRACT

Importance: The prevalence of obesity among youths 2 to 19 years of age in the US from 2017 to 2018 was 19.3%; previous studies suggested that school lunch consumption was associated with increased obesity. The Healthy, Hunger-Free Kids Act of 2010 (HHFKA) strengthened nutritional standards of school-based meals. Objective: To evaluate the association between the HHFKA and youth body mass index (BMI). Design, Setting, and Participants: This cohort study was conducted using data from the Environmental Influences on Child Health Outcomes program, a nationwide consortium of child cohort studies, between January 2005 and March 2020. Cohorts in the US of youths aged 5 to 18 years with reported height and weight measurements were included. Exposures: Full implementation of the HHFKA. Main Outcomes and Measures: The main outcome was annual BMI z-score (BMIz) trends before (January 2005 to August 2016) and after (September 2016 to March 2020) implementation of the HHFKA, adjusted for self-reported race, ethnicity, maternal education, and cohort group. An interrupted time-series analysis design was used to fit generalized estimating equation regression models. Results: A total of 14 121 school-aged youths (7237 [51.3%] male; mean [SD] age at first measurement, 8.8 [3.6] years) contributing 26 205 BMI measurements were included in the study. Overall, a significant decrease was observed in the annual BMIz in the period following implementation of the HHFKA compared with prior to implementation (-0.041; 95% CI, -0.066 to -0.016). In interaction models to evaluate subgroup associations, similar trends were observed among youths 12 to 18 years of age (-0.045; 95% CI, -0.071 to -0.018) and among youths living in households with a lower annual income (-0.038; 95% CI, -0.063 to -0.013). Conclusions and Relevance: In this cohort study, HHFKA implementation was associated with a significant decrease in BMIz among school-aged youths in the US. The findings suggest that school meal programs represent a key opportunity for interventions to combat the childhood obesity epidemic given the high rates of program participation and the proportion of total calories consumed through school-based meals.


Subject(s)
Pediatric Obesity , Humans , Male , Child , Adolescent , Child, Preschool , Young Adult , Adult , Female , Body Mass Index , Pediatric Obesity/epidemiology , Pediatric Obesity/prevention & control , Cohort Studies , Nutrition Policy , Schools
14.
J Allergy Clin Immunol ; 151(6): 1494-1502.e14, 2023 06.
Article in English | MEDLINE | ID: mdl-36649759

ABSTRACT

BACKGROUND: Environmental, genetic, and microbial factors are independently associated with childhood asthma. OBJECTIVE: We sought to determine the roles of environmental exposures and 17q12-21 locus genotype in the maturation of the early-life microbiome in childhood asthma. METHODS: We analyzed fecal 16s rRNA sequencing at age 3 to 6 months and age 1 year to characterize microbial maturation of offspring of participants in the Vitamin D Antenatal Reduction Trial. We determined associations of microbial maturation and environmental exposures in the mediation of asthma risk at age 3 years. We examined 17q12-21 genotype and microbial maturation associations with asthma risk in Vitamin D Antenatal Reduction Trial and the replication cohort Copenhagen Prospective Studies on Childhood Asthma 2010. RESULTS: Accelerated fecal microbial maturation at age 3 to 6 months and delayed maturation at age 1 year were associated with asthma (P < .001). Fecal Bacteroides was reduced at age 3 to 6 months in association with subsequent asthma (P = .006) and among subjects with lower microbial maturation at age 1 year (q = 0.009). Sixty-one percent of the association between breast-feeding and asthma was mediated by microbial maturation at age 3 to 6 months. Microbial maturation and 17q12-21 genotypes exhibited independent, additive effects on childhood asthma risk. CONCLUSIONS: The intestinal microbiome and its maturation mediates associations between environmental exposures including breast-feeding and asthma. The intestinal microbiome and 17q12-21 genotype appear to exert additive and independent effects on childhood asthma risk.


Subject(s)
Asthma , Gastrointestinal Microbiome , Humans , Female , Pregnancy , Infant , Child, Preschool , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Prospective Studies , Asthma/genetics , Vitamin D
15.
Allergy ; 78(2): 512-521, 2023 02.
Article in English | MEDLINE | ID: mdl-36448508

ABSTRACT

BACKGROUND: Intestinal microenvironmental perturbations may increase food allergy risk. We hypothesize that children with clinical food allergy, those with food sensitization, and healthy children can be differentiated by intestinal metabolites in the first years of life. METHODS: In this ancillary analysis of the Vitamin D Antenatal Asthma Reduction Trial (VDAART), we performed untargeted metabolomic profiling in 824 stool samples collected at ages 3-6 months, 1 year and 3 years. Subjects included 23 with clinical food allergy at age 3 and/or 6 years, 151 with food sensitization but no clinical food allergy, and 220 controls. We identified modules of correlated, functionally related metabolites and sought associations of metabolite modules and individual metabolites with food allergy/sensitization using regression models. RESULTS: Several modules of functionally related intestinal metabolites were reduced among subjects with food allergy, including bile acids at ages 3-6 months and 1 year, amino acids at age 3-6 months, steroid hormones at 1 year, and sphingolipids at age 3 years. One module primarily containing diacylglycerols was increased in those with food allergy at age 3-6 months. Fecal caffeine metabolites at age 3-6 months, likely derived from breast milk, were increased in those with food allergy and/or sensitization (beta = 5.9, 95% CI 1.0-10.8, p = .02) and were inversely correlated with fecal bile acids and bilirubin metabolites, though maternal plasma caffeine levels were not associated with food allergy and/or sensitization. CONCLUSIONS: Several classes of bioactive fecal metabolites are associated with food allergy and/or sensitization including bile acids, steroid hormones, sphingolipids, and caffeine metabolites.


Subject(s)
Caffeine , Food Hypersensitivity , Child , Humans , Female , Pregnancy , Child, Preschool , Infant , Food Hypersensitivity/diagnosis , Metabolomics , Allergens , Milk, Human , Sphingolipids
16.
Allergy ; 78(2): 418-428, 2023 02.
Article in English | MEDLINE | ID: mdl-36107703

ABSTRACT

BACKGROUND: The infant fecal microbiome is known to impact subsequent asthma risk, but the environmental exposures impacting this association, the role of the maternal microbiome, and how the microbiome impacts different childhood asthma phenotypes are unknown. METHODS: Our objective was to identify associations between features of the prenatal and early-life fecal microbiomes and child asthma phenotypes. We analyzed fecal 16 s rRNA microbiome profiling and fecal metabolomic profiling from stool samples collected from mothers during the third trimester of pregnancy (n = 120) and offspring at ages 3-6 months (n = 265), 1 (n = 436) and 3 years (n = 506) in a total of 657 mother-child pairs participating in the Vitamin D Antenatal Asthma Reduction Trial. We used clinical data from birth to age 6 years to characterize subjects with asthma as having early, transient or active asthma phenotypes. In addition to identifying specific genera that were robustly associated with asthma phenotypes in multiple covariate-adjusted models, we clustered subjects by their longitudinal microbiome composition and sought associations between fecal metabolites and relevant microbiome and clinical features. RESULTS: Seven maternal and two infant fecal microbial taxa were robustly associated with at least one asthma phenotype, and a longitudinal gut microenvironment profile was associated with early asthma (Fisher exact test p = .03). Though mode of delivery was not directly associated with asthma, we found substantial evidence for a pathway whereby cesarean section reduces fecal Bacteroides and microbial sphingolipids, increasing susceptibility to early asthma. CONCLUSION: Overall, our results suggest that the early-life, including prenatal, fecal microbiome modifies risk of asthma, especially asthma with onset by age 3 years.


Subject(s)
Asthma , Gastrointestinal Microbiome , Microbiota , Female , Pregnancy , Humans , Cesarean Section , Asthma/diagnosis , Asthma/epidemiology , Asthma/etiology , Phenotype
17.
Nat Mach Intell ; 5(3): 284-293, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38223254

ABSTRACT

Characterizing the metabolic profile of a microbial community is crucial for understanding its biological function and its impact on the host or environment. Metabolomics experiments directly measuring these profiles are difficult and expensive, while sequencing methods quantifying the species composition of microbial communities are well-developed and relatively cost-effective. Computational methods that are capable of predicting metabolomic profiles from microbial compositions can save considerable efforts needed for metabolomic profiling experimentally. Yet, despite existing efforts, we still lack a computational method with high prediction power, general applicability, and great interpretability. Here we develop a method - mNODE (Metabolomic profile predictor using Neural Ordinary Differential Equations), based on a state-of-the-art family of deep neural network models. We show compelling evidence that mNODE outperforms existing methods in predicting the metabolomic profiles of human microbiomes and several environmental microbiomes. Moreover, in the case of human gut microbiomes, mNODE can naturally incorporate dietary information to further enhance the prediction of metabolomic profiles. Besides, susceptibility analysis of mNODE enables us to reveal microbe-metabolite interactions, which can be validated using both synthetic and real data. The presented results demonstrate that mNODE is a powerful tool to investigate the microbiome-diet-metabolome relationship, facilitating future research on precision nutrition.

18.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499584

ABSTRACT

Maternal infection and stress during the prenatal period have been associated with adverse neurodevelopmental outcomes in offspring, suggesting that biomarkers of increased inflammation in the mothers may associate with poorer developmental outcomes. In 491 mother-child pairs from the Vitamin D Antenatal Asthma Reduction Trial (VDAART), we investigated the association between maternal levels of two inflammatory biomarkers; interleukin-8 (IL-8) and C-Reactive Protein (CRP) during early (10-18 wks) and late (32-38 wks) pregnancy with offspring scores in the five domains of the Ages and Stages Questionnaire, a validated screening tool for assessing early life development. We identified a robust association between early pregnancy IL-8 levels and decreased fine-motor (ß: -0.919, 95%CI: -1.425, -0.414, p = 3.9 × 10-4) and problem-solving skills at age two (ß: -1.221, 95%CI: -1.904, -0.414, p = 4.9 × 10-4). Associations between IL-8 with other domains of development and those for CRP did not survive correction for multiple testing. Similarly, while there was some evidence that the detrimental effects of early pregnancy IL-8 were strongest in boys and in those who were not breastfed, these interactions were not robust to correction for multiple testing. However, further research is required to determine if other maternal inflammatory biomarkers associate with offspring neurodevelopment and work should continue to focus on the management of factors leading to increases in IL-8 levels in pregnant women.


Subject(s)
Asthma , Prenatal Exposure Delayed Effects , Female , Humans , Male , Pregnancy , Asthma/prevention & control , Biomarkers , C-Reactive Protein , Interleukin-8 , Vitamin D , Vitamins , Clinical Trials as Topic
19.
Am J Perinatol ; 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36241210

ABSTRACT

OBJECTIVE: The determinants of preterm birth remain unknown. Excessive maternal inflammation during pregnancy may play an important role in the pathogenesis of preterm birth. Our objective was to describe the association of prenatal levels of proinflammatory C-reactive protein (CRP) and interleukin-8 (IL-8) with preterm birth in participants of the Vitamin D Antenatal Asthma Reduction Trial. STUDY DESIGN: Five hundred and twenty-eight patients with available samples of both first- and third-trimester plasma were included in this analysis. CRP and IL-8 were measured from maternal prenatal samples. We examined the association between prenatal CRP and IL-8 with maternal health characteristics and the outcome of preterm birth. We also described the patterns of change in CRP and IL-8 from first to third trimester and their association with preterm birth. A subgroup analysis comparing only those with a spontaneous preterm birth phenotype to those with term birth was also performed. RESULTS: Maternal characteristics including lower educational attainment, higher prepregnancy body mass index, gestational diabetes, lower vitamin D, and an unhealthy diet were associated with elevated levels of prenatal CRP and IL-8. Higher third trimester CRP and an increase in CRP from first to third trimester were associated with an increased odds of preterm birth when compared to lower levels of CRP (adjusted odds ratio [aOR] = 1.49, 95% confidence interval: 1.02, 2.23, p = 0.04) or a decrease in CRP over pregnancy (aOR = 3.06, 95% CI = 1.31,7.55, p = 0.01), after adjusting for potential confounders. These associations were strengthened when comparing only patients with spontaneous preterm birth (n = 22) to those with term births. CONCLUSION: Higher levels of the proinflammatory markers CRP and IL-8 are associated with indicators of poor maternal health and preterm birth. Prenatal CRP levels may reflect maternal prenatal health status and serve as a predictor of preterm birth, especially among those with spontaneous preterm birth. KEY POINTS: · Elevated prenatal CRP is associated with poor maternal health.. · High prenatal CRP may predict premature birth, especially spontaneous premature birth phenotypes.. · Vitamin D insufficiency may be a modifiable risk factor for prenatal inflammation..

20.
J Allergy Clin Immunol Pract ; 10(12): 3213-3219.e11, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36108928

ABSTRACT

BACKGROUND: The pathogenesis of childhood asthma is complex, and determinants of risk may begin in utero. OBJECTIVE: To describe the association of systemic prenatal inflammation, measured by plasma C-reactive protein (CRP), with childhood asthma, eczema, and allergic rhinitis. METHODS: A total of 522 maternal-offspring pairs from the Vitamin D Antenatal Asthma Reduction Trial were included. Prenatal plasma CRP level was measured between 10 and 18 weeks of gestation and between 32 and 38 weeks of gestation. Offspring asthma, eczema, and allergic rhinitis were assessed quarterly between birth and age 6 years. We performed mediation analyses of prenatal CRP on the association between several maternal characteristics and offspring asthma. RESULTS: Elevated early and late prenatal CRP and an increase in CRP from early to late pregnancy were associated with asthma by age 6 years (early: adjusted odds ratio [aOR], 1.76, 95% CI, 1.12-2.82, P = .02; late: aOR, 2.45, 95% CI, 1.47-4.18, P < .001; CRP increase: aOR, 2.06, 95% CI, 1.26-3.39, P < .004). Prenatal CRP and childhood asthma associations were strengthened among offspring with atopic asthma (early: aOR, 3.78, 95% CI, 1.49-10.64, P = .008; late: aOR, 4.84, 95% CI, 1.68-15.50, P = .005; CRP increase: aOR, 3.01, 95% CI, 1.06-9.16, P = .04). Early and late prenatal CRP mediated 96% and 86% of the association between maternal prepregnancy body mass index and offspring asthma, respectively. CONCLUSIONS: Higher prenatal CRP and an increase in CRP from early to late pregnancy are associated with childhood asthma. Systemic inflammation during pregnancy associated with modifiable maternal characteristics may be an important determinant of childhood asthma risk.


Subject(s)
Asthma , Eczema , Hypersensitivity, Immediate , Prenatal Exposure Delayed Effects , Rhinitis, Allergic , Child , Female , Humans , Pregnancy , Asthma/complications , C-Reactive Protein/metabolism , Eczema/etiology , Hypersensitivity, Immediate/etiology , Inflammation , Prenatal Exposure Delayed Effects/epidemiology , Rhinitis, Allergic/complications , Vitamins
SELECTION OF CITATIONS
SEARCH DETAIL
...