Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Addict Biol ; 27(5): e13206, 2022 09.
Article in English | MEDLINE | ID: mdl-36001420

ABSTRACT

Chronic overeating is a core feature of diet-induced obesity. There is increasing evidence that in vulnerable individuals, such overeating could become compulsive, resembling an addictive disorder. The transition to compulsive substance use has been linked with changes at glutamatergic synapses in the nucleus accumbens. In this study, we investigated a potential link between such glutamatergic dysregulation and compulsive-like eating using a rat model of diet-induced obesity. A conditioned suppression task demonstrated that diet-induced obese rats display eating despite negative consequences, as their consumption was insensitive to an aversive cue. Moreover, nucleus accumbens expression of GluA1 and xCT proteins was upregulated in diet-induced obese animals. Lastly, both a computed 'addiction score' (based on performance across three criteria) and weight gain were positively correlated with changes in GluA1 and xCT expression in the nucleus accumbens. These data demonstrate that the propensity for diet-induced obesity is associated with compulsive-like eating of highly palatable food and is accompanied by 'addiction-like' glutamatergic dysregulation in the nucleus accumbens, thus providing neurobiological evidence of addiction-like pathology in this model of obesity.


Subject(s)
Behavior, Addictive , Feeding Behavior , Animals , Eating , Feeding Behavior/physiology , Hyperphagia , Obesity , Rats , Sugars
2.
J Pineal Res ; 64(3)2018 Apr.
Article in English | MEDLINE | ID: mdl-29149481

ABSTRACT

Chronic amphetamine (AMPH) abuse leads to damage of the hippocampus, the brain area associated with learning and memory process. Previous results have shown that AMPH-induced dopamine neurotransmitter release, reactive oxygen species formation, and degenerative protein aggregation lead to neuronal death. Melatonin, a powerful antioxidant, plays a role as a neuroprotective agent. The objective of this study was to investigate whether the protective effect of melatonin on AMPH-induced hippocampal damage in the postnatal rat acts through the dopaminergic pathway. Four-day-old postnatal rats were subcutaneously injected with 5-10 mg/kg AMPH and pretreated with 10 mg/kg melatonin prior to AMPH exposure for seven days. The results showed that melatonin decreased the AMPH-induced hippocampal neuronal degeneration in the dentate gyrus, CA1, and CA3. Melatonin attenuated the reduction in the expression of hippocampal synaptophysin, PSD-95, α-synuclein, and N-methyl-D-aspartate (NMDA) receptor protein and mRNA caused by AMPH. Melatonin attenuated the AMPH-induced reduction in dopamine transporter (DAT) protein expression in the hippocampus and the reduction in mRNA expression in the ventral tegmental area (VTA). Immunofluorescence demonstrated that melatonin not only prevented the AMPH-induced loss of DAT and NMDA receptor but also prevented AMPH-induced α-synuclein overexpression in the dentate gyrus, CA1, and CA3. Melatonin decreased the AMPH-induced reduction in the protein and mRNA of the NMDA receptor downstream signaling molecule, calcium/calmodulin-dependent protein kinase II (CaMKII), and the melatonin receptors (MT1 and MT2). This study showed that melatonin prevented AMPH-induced toxicity in the hippocampus of postnatal rats possibly via its antioxidative effect and mitochondrial protection.


Subject(s)
Amphetamine/toxicity , Central Nervous System Stimulants/toxicity , Dopaminergic Neurons/drug effects , Melatonin/pharmacology , Neuroprotective Agents/pharmacology , Animals , Dopaminergic Neurons/pathology , Hippocampus/drug effects , Hippocampus/pathology , Nerve Degeneration/chemically induced , Nerve Degeneration/pathology , Rats , Rats, Wistar
3.
Proc Natl Acad Sci U S A ; 113(48): 13893-13898, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849613

ABSTRACT

Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior.


Subject(s)
Appetite/drug effects , Central Amygdaloid Nucleus/metabolism , Receptors, Opioid, mu/genetics , Sodium, Dietary/metabolism , Analgesics, Opioid/administration & dosage , Animals , Appetite/genetics , Appetite/physiology , Brain Mapping , Central Amygdaloid Nucleus/drug effects , Mice , Naloxone/administration & dosage , Naloxone/analogs & derivatives , Neurons/metabolism , Receptors, Opioid, mu/antagonists & inhibitors , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...