Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Data Brief ; 26: 104510, 2019 10.
Article in English | MEDLINE | ID: mdl-31667273

ABSTRACT

The data in this paper are related to the research article entitled "Loading applied on osseointegrated implant by transtibial bone-anchored prostheses during daily activities: Preliminary characterization of prosthetic feet" (Frossard et al., 2019: Accepted). This article contains the individual and grouped loading characteristics applied on transtibial osseointegrated implant generated while walking with bone-anchored prostheses including prosthetic feet with different index of anthropomorphicity. Inter-participant variability was presented for (A) the spatio-temporal characteristics, (B) the loading boundaries and (C) the loading local extremum during walking, ascending and descending ramp and stairs. These initial inter-participant variability benchmark datasets are critical to improve the efficacy and safety of prosthetic components for transtibial prostheses as well as the design of future automated algorithms and clinical trials. Online repository contains the files: https://doi.org/10.17632/vhc6sf7ngy.1.

3.
Data Brief ; 25: 104195, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31406899

ABSTRACT

The data in this paper are related to the research article entitled "Automated characterization of anthropomorphicity of prosthetic feet fitted to bone-anchored transtibial prosthesis" (Frossard et al., 2019: DOI: 10.1109/TBME.2019.2904713). This article contains the individual angles of dorsiflexion and bending moments generated while walking with transtibial bone-anchored prostheses including prosthetic feet with different index of anthropomorphicity. Inter-participant variability were presented for the (A) position of the load cell measuring directly to the bending moments, (B) patterns of angles of dorsiflexion and bending moment as well as moment-angle curves and (C) variations of magnitude of angles of dorsiflexion as well as the raw and bodyweight-normalized bending moments between toe contact and heel off. These initial inter-participant variability benchmark datasets are critical to design future automated algorithms and clinical trials. Online repository contains the files: https://eprints.qut.edu.au/127745/1/127745.pdf.

4.
Article in English | MEDLINE | ID: mdl-30872221

ABSTRACT

OBJECTIVE: This study describes differentiating prosthetic feet designs fitted to bone-anchored transtibial prostheses based on an automated characterization of ankle stiffness profile relying on direct loading measurements. The objectives were (A) to present a process characterizing stiffness using innovative macro, meso and micro analyses, (B) to present stiffness profiles for feet with and without anthropomorphic designs, where anthropomorphicity is defined as a similarity of the moment-angle dependency in prosthetic and in the anatomical ankle, (C) to determine sensitivity of characterization. METHODS: Three participants walked consecutively with two instrumented bone-anchored prostheses including their own prosthetic feet and Free-Flow foot meeting the anthropomorphicity criterion by design. Angle of dorsiflexion was extracted from video footage. Bending moment was recorded using multi-axis transducer attached to osseointegrated fixation. The automated characterization of stiffness involved a 12-step process relying on data-based criterion. RESULTS: The meso analyses confirmed bilinear behavior of moment-angle curves with Index of Anthropomorphicity of -2.966±2.369 Nm/Deg and 2.681±1.089 Nm/Deg indicating a convex and concave shape of usual and Free-Flow feet without and with anthropomorphic designs, respectively. CONCLUSIONS: The proposed straightforward meso analysis of the stiffness was capable to report clinical meaningful differences sensitive to feet's anthropomorphicity. Results confirmed the benefits for clinicians to rely on direct loading measurement providing individualized complementary insight into impact of components. SIGNIFICANCE: This work could assist the developments of standards and guidelines for manufacturing and safe fitting of components to growing population requiring transtibial prostheses with socket or direct skeletal attachment worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL