Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cell Dev Biol ; 123: 57-63, 2022 03.
Article in English | MEDLINE | ID: mdl-34756782

ABSTRACT

A significant amount of attention has been brought to the endocrine-like function of skeletal muscle on various tissues, particularly with bone. Several lines of investigation indicate that the physiology of both bone and muscle systems may be regulated by a given stimulus, such as exercise, aging, and inactivity. Moreover, emerging evidence indicates that bone is heavily influenced by soluble factors derived from skeletal muscle (i.e., muscle-to-bone communication). The purpose of this review is to discuss the regulation of bone remodeling (formation and/or resorption) through skeletal muscle-derived cytokines (hereafter myokines) including the anti-inflammatory cytokine METRNL and pro-inflammatory cytokines (e.g., TNF-α, IL-6, FGF-2 and others). Our goal is to highlight possible therapeutic opportunities to improve muscle and bone health in aging.


Subject(s)
Exercise , Muscle, Skeletal , Bone and Bones , Cytokines/metabolism , Exercise/physiology , Muscle, Skeletal/metabolism
2.
J Neurochem ; 140(3): 421-434, 2017 02.
Article in English | MEDLINE | ID: mdl-27889915

ABSTRACT

Glutamate clearance by astrocytes is an essential part of normal excitatory neurotransmission. Failure to adapt or maintain low levels of glutamate in the central nervous system is associated with multiple acute and chronic neurodegenerative diseases. The primary excitatory amino acid transporters in human astrocytes are EAAT1 and EAAT2 (GLAST and GLT-1, respectively, in rodents). While the inhibition of calcium/calmodulin-dependent kinase (CaMKII), a ubiquitously expressed serine/threonine protein kinase, results in diminished glutamate uptake in cultured primary rodent astrocytes (Ashpole et al. 2013), the molecular mechanism underlying this regulation is unknown. Here, we use a heterologous expression model to explore CaMKII regulation of EAAT1 and EAAT2. In transiently transfected HEK293T cells, pharmacological inhibition of CaMKII (using KN-93 or tat-CN21) reduces [3 H]-glutamate uptake in EAAT1 without altering EAAT2-mediated glutamate uptake. While over-expressing the Thr287Asp mutant to enhance autonomous CaMKII activity had no effect on either EAAT1 or EAAT2-mediated glutamate uptake, over-expressing a dominant-negative version of CaMKII (Asp136Asn) diminished EAAT1 glutamate uptake. SPOTS peptide arrays and recombinant glutathione S-transferase-fusion proteins of the intracellular N- and C-termini of EAAT1 identified two potential phosphorylation sites at residues Thr26 and Thr37 in the N-terminus. Introducing an Ala (a non-phospho mimetic) at Thr37 diminished EAAT1-mediated glutamate uptake, suggesting that the phosphorylation state of this residue is important for constitutive EAAT1 function. Our study is the first to identify a glutamate transporter as a direct CaMKII substrate and suggests that CaMKII signaling is a critical driver of constitutive glutamate uptake by EAAT1.


Subject(s)
Aspartic Acid/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Glutamic Acid/metabolism , Amino Acid Sequence , Animals , Benzylamines/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cells, Cultured , Excitatory Amino Acid Transporter 1/genetics , Female , HEK293 Cells , Humans , Male , Rats , Rats, Sprague-Dawley , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...