Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Article in English | MEDLINE | ID: mdl-38951584

ABSTRACT

Childhood maltreatment (CM) is associated with increased limbic activity, while social support is linked to decreased limbic activity towards negative stimuli. Our study aimed to explore the interaction of perceived social support with CM, and their combined impact on limbic activity in negative emotion processing. A total of 130 healthy individuals (HC) underwent a negative emotional face processing paradigm. They were divided into two groups based on the Childhood Trauma Questionnaire: n = 65 HC without CM matched with n = 65 HC with CM. In a region-of-interest approach of the bilateral amygdala-hippocampus-complex (AHC), regression analyses investigating the association of CM and perceived social support with limbic activity and a social support x CM ANCOVA were conducted. CM was associated with increased AHC activity, while perceived social support tended to be associated with decreased AHC activity during negative emotion processing. The ANCOVA showed a significant interaction in bilateral AHC activity (pFWE ≤ 0.024) driven by a negative association between perceived social support and bilateral AHC activity in HC without CM. No significant association was observed in HC with CM. Exploratory analyses using continuous CM scores support this finding. Our results suggest that CM moderates the link between perceived social support and limbic activity, with a protective effect of perceived social support only in HC without CM. The lack of this effect in HC with CM suggests that CM may alter the buffering effect of perceived social support on limbic functioning, highlighting the potential need for preventive interventions targeting social perception of HC with CM.

2.
Sci Rep ; 14(1): 13859, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879556

ABSTRACT

Smooth pursuit eye movements are considered a well-established and quantifiable biomarker of sensorimotor function in psychosis research. Identifying psychotic syndromes on an individual level based on neurobiological markers is limited by heterogeneity and requires comprehensive external validation to avoid overestimation of prediction models. Here, we studied quantifiable sensorimotor measures derived from smooth pursuit eye movements in a large sample of psychosis probands (N = 674) and healthy controls (N = 305) using multivariate pattern analysis. Balanced accuracies of 64% for the prediction of psychosis status are in line with recent results from other large heterogenous psychiatric samples. They are confirmed by external validation in independent large samples including probands with (1) psychosis (N = 727) versus healthy controls (N = 292), (2) psychotic (N = 49) and non-psychotic bipolar disorder (N = 36), and (3) non-psychotic affective disorders (N = 119) and psychosis (N = 51) yielding accuracies of 65%, 66% and 58%, respectively, albeit slightly different psychosis syndromes. Our findings make a significant contribution to the identification of biologically defined profiles of heterogeneous psychosis syndromes on an individual level underlining the impact of sensorimotor dysfunction in psychosis.


Subject(s)
Biomarkers , Psychotic Disorders , Pursuit, Smooth , Humans , Male , Female , Pursuit, Smooth/physiology , Psychotic Disorders/diagnosis , Psychotic Disorders/physiopathology , Adult , Young Adult , Bipolar Disorder/diagnosis , Bipolar Disorder/physiopathology , Middle Aged , Case-Control Studies , Adolescent
3.
Am J Psychiatry ; : appiajp20230032, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38859702

ABSTRACT

OBJECTIVE: Specific phobia is a common anxiety disorder, but the literature on associated brain structure alterations exhibits substantial gaps. The ENIGMA Anxiety Working Group examined brain structure differences between individuals with specific phobias and healthy control subjects as well as between the animal and blood-injection-injury (BII) subtypes of specific phobia. Additionally, the authors investigated associations of brain structure with symptom severity and age (youths vs. adults). METHODS: Data sets from 31 original studies were combined to create a final sample with 1,452 participants with phobia and 2,991 healthy participants (62.7% female; ages 5-90). Imaging processing and quality control were performed using established ENIGMA protocols. Subcortical volumes as well as cortical surface area and thickness were examined in a preregistered analysis. RESULTS: Compared with the healthy control group, the phobia group showed mostly smaller subcortical volumes, mixed surface differences, and larger cortical thickness across a substantial number of regions. The phobia subgroups also showed differences, including, as hypothesized, larger medial orbitofrontal cortex thickness in BII phobia (N=182) compared with animal phobia (N=739). All findings were driven by adult participants; no significant results were observed in children and adolescents. CONCLUSIONS: Brain alterations associated with specific phobia exceeded those of other anxiety disorders in comparable analyses in extent and effect size and were not limited to reductions in brain structure. Moreover, phenomenological differences between phobia subgroups were reflected in diverging neural underpinnings, including brain areas related to fear processing and higher cognitive processes. The findings implicate brain structure alterations in specific phobia, although subcortical alterations in particular may also relate to broader internalizing psychopathology.

4.
Hum Brain Mapp ; 45(8): e26682, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825977

ABSTRACT

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.


Subject(s)
Bipolar Disorder , Magnetic Resonance Imaging , Obesity , Principal Component Analysis , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Bipolar Disorder/pathology , Adult , Female , Male , Magnetic Resonance Imaging/methods , Middle Aged , Obesity/diagnostic imaging , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Schizophrenia/drug therapy , Schizophrenia/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cluster Analysis , Young Adult , Brain/diagnostic imaging , Brain/pathology
5.
Front Behav Neurosci ; 18: 1396811, 2024.
Article in English | MEDLINE | ID: mdl-38895596

ABSTRACT

Introduction: As a source of audio-visual stimulation, movies expose people to various emotions. Interestingly, several genres are characterized by negative emotional content. Albeit theoretical approaches exist, little is known about preferences for specific movie genres and the neuronal processing of negative emotions. Methods: We investigated associations between movie genre preference and limbic and reward-related brain reactivity to close this gap by employing an fMRI paradigm with negative emotional faces in 257 healthy participants. We compared the functional activity of the amygdala and the nucleus accumbens (NAcc) between individuals with a preference for a particular movie genre and those without such preference. Results and discussion: Amygdala activation was relatively higher in individuals with action movie preference (p TFCE-FWE = 0.013). Comedy genre preference was associated with increased amygdala (p TFCE-FWE = 0.038) and NAcc activity (p TFCE-FWE = 0.011). In contrast, crime/thriller preference (amygdala: p TFCE-FWE ≤ 0.010, NAcc: p TFCE-FWE = 0.036), as well as documentary preference, was linked to the decreased amygdala (p TFCE-FWE = 0.012) and NAcc activity (p TFCE-FWE = 0.015). The study revealed associations between participants' genre preferences and brain reactivity to negative affective stimuli. Interestingly, preferences for genres with similar emotion profiles (action, crime/thriller) were associated with oppositely directed neural activity. Potential links between brain reactivity and susceptibility to different movie-related gratifications are discussed.

6.
Neurobiol Stress ; 31: 100640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38800538

ABSTRACT

Recent work showed an association of prefrontal dysfunctions in patients with Major Depressive Disorder (MDD) and social stress induced rumination. However, up to date it is unclear which etiological features of MDD might cause prefrontal dysfunctions. In the study at hand, we aimed to replicate recent findings, that showed prefrontal activation alterations during the Trier Social Stress Test (TSST) and subsequently increased stress-reactive rumination in MDD compared to healthy controls. Moreover, we aimed to explore the role of adverse childhood experiences and other clinical variables in this relationship. N = 55 patients currently suffering from MDD and n = 42 healthy controls (HC) underwent the TSST, while cortical activity in areas of the Cognitive Control Network (CCN) was measured via functional near-infrared spectroscopy (fNIRS). The TSST successfully induced a stress reaction (physiologically, as well as indicated by subjective stress ratings) and state rumination in all subjects with moderate to large effect sizes. In comparison to HC, MDD patients showed elevated levels of state rumination with large effect sizes, as well as a typical pattern of reduced cortical oxygenation during stress in the CCN with moderate effect sizes. Self-reported emotional abuse and social anxiety were moderately positively associated with increased stress-reactive rumination. Within the MDD sample, emotional abuse was negatively and social anxiety positively associated with cortical oxygenation within the CCN with moderate to large effect sizes. In conclusion, our results replicate previous findings on MDD-associated prefrontal hypoactivity during stress and extends the research toward specific subtypes of depression.

7.
Mol Psychiatry ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806692

ABSTRACT

Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.

8.
Mol Psychiatry ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693319

ABSTRACT

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.

9.
Neuroimage ; 295: 120639, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38796977

ABSTRACT

Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.


Subject(s)
Anxiety Disorders , Cognitive Behavioral Therapy , Machine Learning , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Female , Male , Anxiety Disorders/therapy , Anxiety Disorders/diagnostic imaging , Anxiety Disorders/physiopathology , Adult , Cognitive Behavioral Therapy/methods , Middle Aged , Treatment Outcome , Brain/diagnostic imaging , Brain/physiopathology , Young Adult , Implosive Therapy/methods
11.
Mol Psychiatry ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553539

ABSTRACT

Recurrences of depressive episodes in major depressive disorder (MDD) can be explained by the diathesis-stress model, suggesting that stressful life events (SLEs) can trigger MDD episodes in individuals with pre-existing vulnerabilities. However, the longitudinal neurobiological impact of SLEs on gray matter volume (GMV) in MDD and its interaction with early-life adversity remains unresolved. In 754 participants aged 18-65 years (362 MDD patients; 392 healthy controls; HCs), we assessed longitudinal associations between SLEs (Life Events Questionnaire) and whole-brain GMV changes (3 Tesla MRI) during a 2-year interval, using voxel-based morphometry in SPM12/CAT12. We also explored the potential moderating role of childhood maltreatment (Childhood Trauma Questionnaire) on these associations. Over the 2-year interval, HCs demonstrated significant GMV reductions in the middle frontal, precentral, and postcentral gyri in response to higher levels of SLEs, while MDD patients showed no such GMV changes. Childhood maltreatment did not moderate these associations in either group. However, MDD patients who had at least one depressive episode during the 2-year interval, compared to those who did not, or HCs, showed GMV increases in the middle frontal, precentral, and postcentral gyri associated with an increase in SLEs and childhood maltreatment. Our findings indicate distinct GMV changes in response to SLEs between MDD patients and HCs. GMV decreases in HCs may represent adaptive responses to stress, whereas GMV increases in MDD patients with both childhood maltreatment and a depressive episode during the 2-year interval may indicate maladaptive changes, suggesting a neural foundation for the diathesis-stress model in MDD recurrences.

12.
Transl Psychiatry ; 14(1): 137, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453896

ABSTRACT

Although highly effective on average, exposure-based treatments do not work equally well for all patients with anxiety disorders. The identification of pre-treatment response-predicting patient characteristics may enable patient stratification. Preliminary research highlights the relevance of inhibitory fronto-limbic networks as such. We aimed to identify pre-treatment neural signatures differing between exposure treatment responders and non-responders in spider phobia and to validate results through rigorous replication. Data of a bi-centric intervention study comprised clinical phenotyping and pre-treatment resting-state functional connectivity (rsFC) data of n = 79 patients with spider phobia (discovery sample) and n = 69 patients (replication sample). RsFC data analyses were accomplished using the Matlab-based CONN-toolbox with harmonized analyses protocols at both sites. Treatment response was defined by a reduction of >30% symptom severity from pre- to post-treatment (Spider Phobia Questionnaire Score, primary outcome). Secondary outcome was defined by a reduction of >50% in a Behavioral Avoidance Test (BAT). Mean within-session fear reduction functioned as a process measure for exposure. Compared to non-responders and pre-treatment, results in the discovery sample seemed to indicate that responders exhibited stronger negative connectivity between frontal and limbic structures and were characterized by heightened connectivity between the amygdala and ventral visual pathway regions. Patients exhibiting high within-session fear reduction showed stronger excitatory connectivity within the prefrontal cortex than patients with low within-session fear reduction. Whereas these results could be replicated by another team using the same data (cross-team replication), cross-site replication of the discovery sample findings in the independent replication sample was unsuccessful. Results seem to support negative fronto-limbic connectivity as promising ingredient to enhance response rates in specific phobia but lack sufficient replication. Further research is needed to obtain a valid basis for clinical decision-making and the development of individually tailored treatment options. Notably, future studies should regularly include replication approaches in their protocols.


Subject(s)
Phobic Disorders , Spiders , Animals , Humans , Magnetic Resonance Imaging , Phobic Disorders/diagnostic imaging , Phobic Disorders/therapy , Anxiety Disorders , Fear/physiology
13.
Sci Rep ; 14(1): 5685, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454076

ABSTRACT

The COVID-19 pandemic and associated countermeasures had an immensely disruptive impact on people's lives. Due to the lack of systematic pre-pandemic data, however, it is still unclear how individuals' psychological health has been affected across this incisive event. In this study, we analyze longitudinal data from two healthy samples (N = 307) to provide quasi-longitudinal insight into the full trajectory of psychological burden before (baseline), during the first peak, and at a relative downturn of the COVID-19 pandemic. Our data indicated a medium rise in psychological strain from baseline to the first peak of the pandemic (d = 0.40). Surprisingly, this was overcompensated by a large decrease of perceived burden until downturn (d = - 0.93), resulting in a positive overall effect of the COVID-19 pandemic on mental health (d = 0.44). Accounting for this paradoxical positive effect, our results reveal that the post-pandemic increase in mental health is driven by individuals that were already facing psychological challenges before the pandemic. These findings suggest that coping with acute challenges such as the COVID-19 pandemic can stabilize previously impaired mental health through reframing processes.


Subject(s)
COVID-19 , Psychological Distress , Humans , Mental Health , COVID-19/epidemiology , Pandemics , Health Status
14.
Mol Psychiatry ; 29(5): 1501-1509, 2024 May.
Article in English | MEDLINE | ID: mdl-38278993

ABSTRACT

Biased emotion processing has been suggested to underlie the etiology and maintenance of depression. Neuroimaging studies have shown mood-congruent alterations in amygdala activity in patients with acute depression, even during early, automatic stages of emotion processing. However, due to a lack of prospective studies over periods longer than 8 weeks, it is unclear whether these neurofunctional abnormalities represent a persistent correlate of depression even in remission. In this prospective case-control study, we aimed to examine brain functional correlates of automatic emotion processing in the long-term course of depression. In a naturalistic design, n = 57 patients with acute major depressive disorder (MDD) and n = 37 healthy controls (HC) were assessed with functional magnetic resonance imaging (fMRI) at baseline and after 2 years. Patients were divided into two subgroups according to their course of illness during the study period (n = 37 relapse, n = 20 no-relapse). During fMRI, participants underwent an affective priming task that assessed emotion processing of subliminally presented sad and happy compared to neutral face stimuli. A group × time × condition (3 × 2 × 2) ANOVA was performed for the amygdala as region-of-interest (ROI). At baseline, there was a significant group × condition interaction, resulting from amygdala hyperactivity to sad primes in patients with MDD compared to HC, whereas no difference between groups emerged for happy primes. In both patient subgroups, amygdala hyperactivity to sad primes persisted after 2 years, regardless of relapse or remission at follow-up. The results suggest that amygdala hyperactivity during automatic processing of negative stimuli persists during remission and represents a trait rather than a state marker of depression. Enduring neurofunctional abnormalities may reflect a consequence of or a vulnerability to depression.


Subject(s)
Amygdala , Depressive Disorder, Major , Emotions , Magnetic Resonance Imaging , Humans , Amygdala/physiopathology , Male , Female , Adult , Magnetic Resonance Imaging/methods , Depressive Disorder, Major/physiopathology , Emotions/physiology , Case-Control Studies , Middle Aged , Prospective Studies , Facial Expression , Depression/physiopathology , Brain Mapping/methods , Subliminal Stimulation
15.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38198165

ABSTRACT

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Subject(s)
Depressive Disorder, Major , Humans , Female , Male , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Diffusion Tensor Imaging , Cohort Studies , Reproducibility of Results , Magnetic Resonance Imaging , Biomarkers
16.
Biol Psychiatry ; 95(7): 629-638, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37207935

ABSTRACT

BACKGROUND: The psychopathological syndrome of formal thought disorder (FTD) is not only present in schizophrenia (SZ), but also highly prevalent in major depressive disorder and bipolar disorder. It remains unknown how alterations in the structural white matter connectome of the brain correlate with psychopathological FTD dimensions across affective and psychotic disorders. METHODS: Using FTD items of the Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms, we performed exploratory and confirmatory factor analyses in 864 patients with major depressive disorder (n= 689), bipolar disorder (n = 108), or SZ (n = 67) to identify psychopathological FTD dimensions. We used T1- and diffusion-weighted magnetic resonance imaging to reconstruct the structural connectome of the brain. To investigate the association of FTD subdimensions and global structural connectome measures, we employed linear regression models. We used network-based statistic to identify subnetworks of white matter fiber tracts associated with FTD symptomatology. RESULTS: Three psychopathological FTD dimensions were delineated, i.e., disorganization, emptiness, and incoherence. Disorganization and incoherence were associated with global dysconnectivity. Network-based statistics identified subnetworks associated with the FTD dimensions disorganization and emptiness but not with the FTD dimension incoherence. Post hoc analyses on subnetworks did not reveal diagnosis × FTD dimension interaction effects. Results remained stable after correcting for medication and disease severity. Confirmatory analyses showed a substantial overlap of nodes from both subnetworks with cortical brain regions previously associated with FTD in SZ. CONCLUSIONS: We demonstrated white matter subnetwork dysconnectivity in major depressive disorder, bipolar disorder, and SZ associated with FTD dimensions that predominantly comprise brain regions implicated in speech. Results open an avenue for transdiagnostic, psychopathology-informed, dimensional studies in pathogenetic research.


Subject(s)
Depressive Disorder, Major , Frontotemporal Dementia , Psychotic Disorders , Schizophrenia , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/complications , Frontotemporal Dementia/complications , Psychotic Disorders/psychology , Brain/diagnostic imaging , Brain/pathology , Schizophrenia/pathology , Magnetic Resonance Imaging
17.
Psychol Med ; 54(6): 1215-1227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37859592

ABSTRACT

BACKGROUND: Schizotypy represents an index of psychosis-proneness in the general population, often associated with childhood trauma exposure. Both schizotypy and childhood trauma are linked to structural brain alterations, and it is possible that trauma exposure moderates the extent of brain morphological differences associated with schizotypy. METHODS: We addressed this question using data from a total of 1182 healthy adults (age range: 18-65 years old, 647 females/535 males), pooled from nine sites worldwide, contributing to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Schizotypy working group. All participants completed both the Schizotypal Personality Questionnaire Brief version (SPQ-B), and the Childhood Trauma Questionnaire (CTQ), and underwent a 3D T1-weighted brain MRI scan from which regional indices of subcortical gray matter volume and cortical thickness were determined. RESULTS: A series of multiple linear regressions revealed that differences in cortical thickness in four regions-of-interest were significantly associated with interactions between schizotypy and trauma; subsequent moderation analyses indicated that increasing levels of schizotypy were associated with thicker left caudal anterior cingulate gyrus, right middle temporal gyrus and insula, and thinner left caudal middle frontal gyrus, in people exposed to higher (but not low or average) levels of childhood trauma. This was found in the context of morphological changes directly associated with increasing levels of schizotypy or increasing levels of childhood trauma exposure. CONCLUSIONS: These results suggest that alterations in brain regions critical for higher cognitive and integrative processes that are associated with schizotypy may be enhanced in individuals exposed to high levels of trauma.


Subject(s)
Adverse Childhood Experiences , Psychological Tests , Schizotypal Personality Disorder , Self Report , Adult , Male , Female , Humans , Adolescent , Young Adult , Middle Aged , Aged , Schizotypal Personality Disorder/diagnostic imaging , Schizotypal Personality Disorder/psychology , Brain/diagnostic imaging , Gray Matter , Magnetic Resonance Imaging/methods
18.
Psychol Med ; 54(5): 940-950, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37681274

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) studies on major depressive disorder (MDD) have predominantly found short-term electroconvulsive therapy (ECT)-related gray matter volume (GMV) increases, but research on the long-term stability of such changes is missing. Our aim was to investigate long-term GMV changes over a 2-year period after ECT administration and their associations with clinical outcome. METHODS: In this nonrandomized longitudinal study, patients with MDD undergoing ECT (n = 17) are assessed three times by structural MRI: Before ECT (t0), after ECT (t1) and 2 years later (t2). A healthy (n = 21) and MDD non-ECT (n = 33) control group are also measured three times within an equivalent time interval. A 3(group) × 3(time) ANOVA on whole-brain level and correlation analyses with clinical outcome variables is performed. RESULTS: Analyses yield a significant group × time interaction (pFWE < 0.001) resulting from significant volume increases from t0 to t1 and decreases from t1 to t2 in the ECT group, e.g., in limbic areas. There are no effects of time in both control groups. Volume increases from t0 to t1 correlate with immediate and delayed symptom increase, while volume decreases from t1 to t2 correlate with long-term depressive outcome (all p ⩽ 0.049). CONCLUSIONS: Volume increases induced by ECT appear to be a transient phenomenon as volume strongly decreased 2 years after ECT. Short-term volume increases are associated with less symptom improvement suggesting that the antidepressant effect of ECT is not due to volume changes. Larger volume decreases are associated with poorer long-term outcome highlighting the interplay between disease progression and structural changes.


Subject(s)
Depressive Disorder, Major , Electroconvulsive Therapy , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depressive Disorder, Major/pathology , Electroconvulsive Therapy/methods , Depression , Longitudinal Studies , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods
19.
Front Aging Neurosci ; 15: 1085153, 2023.
Article in English | MEDLINE | ID: mdl-37920384

ABSTRACT

Background: Controllability is a measure of the brain's ability to orchestrate neural activity which can be quantified in terms of properties of the brain's network connectivity. Evidence from the literature suggests that aging can exert a general effect on whole-brain controllability. Mounting evidence, on the other hand, suggests that parenthood and motherhood in particular lead to long-lasting changes in brain architecture that effectively slow down brain aging. We hypothesize that parenthood might preserve brain controllability properties from aging. Methods: In a sample of 814 healthy individuals (aged 33.9 ± 12.7 years, 522 females), we estimate whole-brain controllability and compare the aging effects in subjects with vs. those without children. We use diffusion tensor imaging (DTI) to estimate the brain structural connectome. The level of brain control is then calculated from the connectomic properties of the brain structure. Specifically, we measure the network control over many low-energy state transitions (average controllability) and the network control over difficult-to-reach states (modal controllability). Results and conclusion: In nulliparous females, whole-brain average controllability increases, and modal controllability decreases with age, a trend that we do not observe in parous females. Statistical comparison of the controllability metrics shows that modal controllability is higher and average controllability is lower in parous females compared to nulliparous females. In men, we observed the same trend, but the difference between nulliparous and parous males do not reach statistical significance. Our results provide strong evidence that parenthood contradicts aging effects on brain controllability and the effect is stronger in mothers.

20.
Mol Psychiatry ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38036604

ABSTRACT

Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...