Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(10): e2304814, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37875646

ABSTRACT

Owing to the limited electrochemical stability window of carbonate electrolytes, the initial formation of a solid electrolyte interphase and surface film on the negative and positive electrode surfaces by the decomposition of the electrolyte component is inevitable for the operation of lithium secondary batteries. The deposited film on the surface of the active material is vital for reducing further electrochemical side reactions at the surface; hence, the manipulation of this formation process is necessary for the appropriate operation of the assembled battery system. In this study, the thermal decomposition of LiPF6 salt is used as a surface passivation agent, which is autocatalytically formed during high-temperature storage. The thermally formed difluorophosphoric acid is subsequently oxidized on the partially charged high-Ni positive electrode surface, which improves the cycleability of lithium metal cells via phosphorus- and fluorine-based surface film formation. Moreover, the improvement in the high-temperature cycleability is demonstrated by controlling the formation process in the lithium-ion pouch cell with a short period of high-temperature storage before battery usage.

2.
Small ; 19(28): e2301754, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36970771

ABSTRACT

The uncontrollable dendritic growth of metallic lithium during repeated cycling in carbonate electrolytes is a crucial obstacle hindering the practical use of Li-metal batteries (LMBs). Among numerous approaches proposed to mitigate the intrinsic constraints of Li metal, the design of a functional separator is an attractive approach to effectively suppress the growth of Li dendrites because direct contact with both the Li metal surface and the electrolyte is maintained. Here, a newly designed all-in-one separator containing bifunctional CaCO3 nanoparticles (CPP separator) is proposed to achieve the flattening of Li deposits on the Li electrode. Strong interactions between the highly polar CaCO3 nanoparticles and the polar solvent reduces the ionic radius of the Li+ -solvent complex, thus increasing the Li+ transference number and leading to a reduced concentration overpotential in the electrolyte-filled separator. Furthermore, the integration of CaCO3 nanoparticles into the separator induces the spontaneous formation of mechanically-strong and lithiophilic CaLi2 at the Li/separator interface, which effectively decreases the nucleation overpotential toward Li plating. As a result, the Li deposits exhibit dendrite-free planar morphologies, thus enabling excellent cycling performance in LMBs configured with a high-Ni cathode in a carbonate electrolyte under practical operating conditions.

3.
ACS Appl Mater Interfaces ; 15(5): 6923-6932, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36715535

ABSTRACT

The lithium (Li) metal anode is highly desirable for high-energy density batteries. During prolonged Li plating-stripping, however, dendritic Li formation and growth are probabilistically high, allowing physical contact between the two electrodes, which results in a cell short-circuit. Engineering the separator is a promising and facile way to suppress dendritic growth. When a conventional coating approach is applied, it usually sacrifices the bare separator structure and severely increases the thickness, ultimately decreasing the volumetric density. Herein, we introduce dielectric silicon oxide with the feature of bi-morphological form, i.e., backbone-covered and backbone-anchored, onto the conventional polyethylene separator without any volumetric change. These functionally vary the Li+ transference number and the ionic conductivity so as to modulate Li-ion solvation and self-scavenging of Li dendrites. The proposed separator paves the way to maximizing the full cell performance of Li/NCM622 toward practical application.

4.
ACS Appl Mater Interfaces ; 14(31): 35645-35653, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35900885

ABSTRACT

To promote the reversible cycleability of Li metal negative electrodes, a Li-chelating azamacrocyclic ligand molecule is introduced into a carbonate-based electrolyte intended for lithium metal batteries. Reversible Li plating and stripping on the Cu electrode are found to be the outcomes of the bifunctional effects of adding the lithium nitrate-chelating azamacrocyclic ligand. The negatively shifted redox potential of the Li-chelating macrocyclic ligand, relative to that of the free Li-ion, acted as a cationic shielding molecule for smooth Li deposition, and the Li3N-based solid electrolyte interphase (SEI) film derived from the nitrate anion strengthened the interphasial characteristics of the Li metal negative electrode. Cationic shielding and Li3N-based SEI composition could help enhance the cycleability of the Li metal in a cascading manner. Consequently, the physicochemical characteristics of the lithium nitrate-chelated 1,4,8,11-tetramethyl-1,4,8,11-tetraazacylcotetradecane molecule exhibit stable Li/LiNi0.8Co0.1Mn0.1O2 cycleability.

SELECTION OF CITATIONS
SEARCH DETAIL
...