Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(1)2023 01 09.
Article in English | MEDLINE | ID: mdl-36671524

ABSTRACT

Glutamate is the major excitatory neurotransmitter in the central nervous system, and there is evidence that Group-I metabotropic glutamate receptors (mGlu1 and mGlu5) have established roles in excitatory neurotransmission and synaptic plasticity. While glutamate is abundantly present in the gut, it plays a smaller role in neurotransmission in the enteric nervous system. In this study, we examined the roles of Group-I mGlu receptors in gastrointestinal function. We investigated the expression of Grm1 (mGlu1) and Grm5 (mGlu5) in the mouse myenteric plexus using RNAscope in situ hybridization. Live calcium imaging and motility analysis were performed on ex vivo preparations of the mouse colon. mGlu5 was found to play a role in excitatory enteric neurotransmission, as electrically-evoked calcium transients were sensitive to the mGlu5 antagonist MPEP. However, inhibition of mGlu5 activity did not affect colonic motor complexes (CMCs). Instead, inhibition of mGlu1 using BAY 36-7620 reduced CMC frequency but did not affect enteric neurotransmission. These data highlight complex roles for Group-I mGlu receptors in myenteric neuron activity and colonic function.


Subject(s)
Calcium , Central Nervous System , Mice , Animals , Calcium/pharmacology , Central Nervous System/metabolism , Neurons/metabolism , Glutamic Acid/metabolism , Synaptic Transmission
2.
Adv Exp Med Biol ; 1383: 191-203, 2022.
Article in English | MEDLINE | ID: mdl-36587158

ABSTRACT

With the earth's 24-h rotation cycle, physiological function fluctuates in both diurnal and nocturnal animals, thereby ensuring optimal functioning of the body. The main regulator of circadian rhythm is the suprachiasmatic nucleus (SCN), which is considered the main pacemaker or "central clock" of the body. Located in the anterior hypothalamus, the SCN influences the activity of other brain regions, as well as peripheral organs, through the release of melatonin and corticosteroids. The SCN can be entrained by several cues, with light being the major cue. Light information from the retina is received by the SCN via the retinohypothalamic tract. Non-photic cues such as temperature and exercise can also entrain the SCN, while feeding time can entrain the "molecular clock" contained within peripheral tissues. This enables organs such as the gastrointestinal (GI) tract to coordinate function with environmental factors, such as food availability.The GI tract, which has the main functions of receiving and digesting food, and expelling waste, also shows oscillations in its activity during the circadian cycle. While these changes are evident under normal conditions, GI function is affected when normal circadian rhythm is disrupted. Recent reviews have assessed interactions between the central clock and gut clock; as such, this review aims to focus on the presence of endogenous circadian rhythms in the GI tract, with particular focus to changes to gastrointestinal motility.


Subject(s)
Melatonin , Suprachiasmatic Nucleus , Animals , Suprachiasmatic Nucleus/physiology , Circadian Rhythm/physiology , Food , Gastrointestinal Motility
3.
Cell Mol Gastroenterol Hepatol ; 11(5): 1548-1592.e1, 2021.
Article in English | MEDLINE | ID: mdl-33444816

ABSTRACT

BACKGROUND AND AIMS: Bowel function requires coordinated activity of diverse enteric neuron subtypes. Our aim was to define gene expression in these neuron subtypes to facilitate development of novel therapeutic approaches to treat devastating enteric neuropathies, and to learn more about enteric nervous system function. METHODS: To identify subtype-specific genes, we performed single-nucleus RNA-seq on adult mouse and human colon myenteric plexus, and single-cell RNA-seq on E17.5 mouse ENS cells from whole bowel. We used immunohistochemistry, select mutant mice, and calcium imaging to validate and extend results. RESULTS: RNA-seq on 635 adult mouse colon myenteric neurons and 707 E17.5 neurons from whole bowel defined seven adult neuron subtypes, eight E17.5 neuron subtypes and hundreds of differentially expressed genes. Manually dissected human colon myenteric plexus yielded RNA-seq data from 48 neurons, 3798 glia, 5568 smooth muscle, 377 interstitial cells of Cajal, and 2153 macrophages. Immunohistochemistry demonstrated differential expression for BNC2, PBX3, SATB1, RBFOX1, TBX2, and TBX3 in enteric neuron subtypes. Conditional Tbx3 loss reduced NOS1-expressing myenteric neurons. Differential Gfra1 and Gfra2 expression coupled with calcium imaging revealed that GDNF and neurturin acutely and differentially regulate activity of ∼50% of myenteric neurons with distinct effects on smooth muscle contractions. CONCLUSION: Single cell analyses defined genes differentially expressed in myenteric neuron subtypes and new roles for TBX3, GDNF and NRTN. These data facilitate molecular diagnostic studies and novel therapeutics for bowel motility disorders.


Subject(s)
Biomarkers/analysis , Enteric Nervous System/metabolism , Gene Expression Regulation , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neurturin/metabolism , Single-Cell Analysis/methods , T-Box Domain Proteins/metabolism , Adult , Aged , Aged, 80 and over , Animals , Female , Glial Cell Line-Derived Neurotrophic Factor/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neurturin/genetics , RNA-Seq/methods , T-Box Domain Proteins/genetics , Young Adult
4.
Autism Res ; 13(5): 691-701, 2020 05.
Article in English | MEDLINE | ID: mdl-31002480

ABSTRACT

Gastrointestinal (GI) dysfunction is commonly reported by people diagnosed with autism spectrum disorder (ASD; autism) but the cause is unknown. Mutations in genes encoding synaptic proteins including Neuroligin-3 are associated with autism. Mice lacking Neuroligin-3 (Nlgn3-/- ) have altered brain function, but whether the enteric nervous system (ENS) is altered remains unknown. We assessed for changes in GI structure and function in Nlgn3-/- mice. We found no significant morphological differences in villus height or crypt depth in the jejunum or colon between wildtype (WT) and Nlgn3-/- mice. To determine whether deletion of Nlgn3 affects enteric neurons, we stained for neural markers in the myenteric plexus. Nlgn3-/- mice had similar numbers of neurons expressing the pan-neuronal marker Hu in the jejunum, proximal mid, and distal colon regions. We also found no differences in the number of neuronal nitric oxide synthase (nNOS+) or calretinin (CalR+) motor neurons and interneurons between WT and Nlgn3-/- mice. We used ex vivo video imaging analysis to assess colonic motility under baseline conditions and observed faster colonic migrating motor complexes (CMMCs) and an increased colonic diameter in Nlgn3-/- mice, although CMMC frequency was unchanged. At baseline, CMMCs were faster in Nlgn3-/- mice compared to WT. Although the numbers of neuronal subsets are conserved in Nlgn3-/- mice, these findings suggest that Neuroligin-3 modulates inhibitory neural pathways in the ENS and may contribute to mechanisms underlying GI disorders in autism. Autism Res 2020, 13: 691-701. © 2019 The Authors. Autism Research published by International Society for Autism Research published byWiley Periodicals, Inc. LAY SUMMARY: People with autism commonly experience gut problems. Many gene mutations associated with autism affect neuronal activity. We studied mice in which the autism-associated Neuroligin-3 gene is deleted to determine whether this impacts gut neuronal numbers or motility. We found that although mutant mice had similar gut structure and numbers of neurons in all gut regions examined, they had distended colons and faster colonic muscle contractions. Further work is needed to understand how Neuroligin-3 affects neuron connectivity in the gastrointestinal tract.


Subject(s)
Cell Adhesion Molecules, Neuronal/antagonists & inhibitors , Colon/physiopathology , Gastrointestinal Diseases/physiopathology , Gastrointestinal Motility/physiology , Membrane Proteins/antagonists & inhibitors , Nerve Tissue Proteins/antagonists & inhibitors , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
J Neurogastroenterol Motil ; 26(1): 133-146, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31715094

ABSTRACT

BACKGROUND/AIMS: Patients with Duchenne muscular dystrophy exhibit significant, ongoing impairments in gastrointestinal (GI) function likely resulting from dysregulated nitric oxide production. Compounds increasing neuronal nitric oxide synthase expression and/or activity could improve GI dysfunction and enhance quality of life for dystrophic patients. We used video imaging and spatiotemporal mapping to identify GI dysfunction in mdx dystrophic mice and determine whether dietary intervention to enhance nitric oxide could alleviate aberrant colonic activity in muscular dystrophy. METHODS: Four-week-old male C57BL/10 and mdx mice received a specialized diet either with no supplementation (control) or supplemented (1 g/kg/day) with L-alanine, L-arginine, or L-citrulline for 8 weeks. At the conclusion of treatment, mice were sacrificed by cervical dislocation and colon motility examined by spatiotemporal (ST) mapping ex vivo. RESULTS: ST mapping identified increased contraction number in the mid and distal colon of mdx mice on control and L-alanine supplemented diets relative to C57BL/10 mice (P < 0.05). Administration of either L-arginine or L-citrulline attenuated contraction number in distal colons of mdx mice relative to C57BL/10 mice. CONCLUSIONS: GI dysfunction in Duchenne muscular dystrophy has been sadly neglected as an issue affecting quality of life. ST mapping identified regional GI dysfunction in the mdx dystrophic mouse. Dietary interventions to increase nitric oxide signaling in the GI tract reduced the number of colonic contractions and alleviated colonic constriction at rest. These findings in mdx mice reveal that L-arginine can improve colonic motility and has potential therapeutic relevance for alleviating GI discomfort, improving clinical care, and enhancing quality of life in Duchenne muscular dystrophy.

SELECTION OF CITATIONS
SEARCH DETAIL
...