Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Strength Cond Res ; 23(7): 2009-14, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19704381

ABSTRACT

Acceleration, or an increase in the rate of movement, is integral to success in many sports. Improvements in acceleration often entail workouts done at intensities that elicit higher blood lactate concentrations (BLa). The purpose of the study is to assess the impact of acceleration on BLa. Methods required subjects (n = 45) to perform 4 workouts that each involved two 1-minute sets of hip- and knee-extension repetitions on an inertial exercise trainer (Impulse Training Systems, Newnan, Georgia). Subjects performed 2 workouts comprised solely of phasic or tonic repetitions; their sequence was randomized to prevent an order effect. Before and 5 minutes after exercise, subjects' BLa were assessed with a calibrated analyzer (Sports Resource Group, Hawthorne, New York). Post and delta (post-pre) BLa both served as criterion measures for multivariate analysis. Average and peak acceleration values, derived from both phasic and tonic workouts, served as predictor variables. Results showed statistical significance (p < 0.05; R = 0.2534) and yielded the following prediction equation from phasic workouts: delta BLa = 1.40 + 1.116 (average acceleration set 1)--0.011 (peak acceleration set 1)--0.634 (average acceleration set 2) + 0.005 (peak acceleration set 2). Conclusions suggest delta BLa variance, which represents the increase of the metabolite incurred from workouts, is most easily explained by average acceleration values, which describes the mean increase in the rate of movement from phasic workouts. To improve an athlete's tolerance for acceleration-induced BLa increases, workouts should be tailored with respect to the muscles involved and the duration of exercise bouts of their chosen sport.


Subject(s)
Exercise/physiology , Lactic Acid/blood , Resistance Training , Adult , Female , Humans , Male , Movement , Young Adult
2.
J Strength Cond Res ; 22(6): 1760-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18978629

ABSTRACT

A high-speed, low-resistance inertial exercise trainer (IET, Impulse Training Systems, Newnan, Ga) is increasingly employed in rehabilitative and athletic performance settings. Repetitions on an IET are done through a large range of motion because multijoint movements occur over more than one plane of motion, with no limitation on velocities or accelerations attained. The current study purpose is to assess data reproducibility from an instrumented IET through multiple test-retest measures. Data collection methods required the IET left and right halves to be fitted with a TLL-2K force transducer (Transducer Techniques, Temecula, Calif) on one of its pulleys, and an infrared position sensor (Model CX3-AP-1A, automationdirect.com) located midway on the underside of each track. Signals passed through DI-158U signal conditioners (DATAQ Instruments, Akron, Ohio) and were measured with a four-channel analog data acquisition card at 4000 Hz. To assess data reproducibility, college-age subjects (n = 45) performed four IET workouts that were spaced 1 week apart. Workouts entailed two 60-second sets of repetitive knee- and hip-extensor muscle actions as subjects were instructed to exert maximal voluntary effort. Results from multiple test-retest measures show that the IET elicited reproducible intra- and interworkout data despite the unique challenge of multiplanar and multijoint exercise done over a large range of motion. We conclude that future studies in which IET performance measurement is required may choose to instrument the device with current methodology. Current practical applications include making IET data easier to comprehend for the coaches, athletes, and health care providers who use the device.


Subject(s)
Muscle Strength/physiology , Resistance Training/instrumentation , Female , Humans , Male , Muscle Contraction/physiology , Range of Motion, Articular/physiology , Reproducibility of Results , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...