Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 8: 87, 2010 Sep 25.
Article in English | MEDLINE | ID: mdl-20868515

ABSTRACT

BACKGROUND: Genome-wide gene expression profiling of whole blood is an attractive method for discovery of biomarkers due to its non-invasiveness, simple clinical site processing and rich biological content. Except for a few successes, this technology has not yet matured enough to reach its full potential of identifying biomarkers useful for clinical prognostic and diagnostic applications or in monitoring patient response to therapeutic intervention. A variety of technical problems have hampered efforts to utilize this technology for identification of biomarkers. One significant hurdle has been the high and variable concentrations of globin transcripts in whole blood total RNA potentially resulting in non-specific probe binding and high background. In this study, we investigated and quantified the power of three whole blood profiling approaches to detect meaningful biological expression patterns. METHODS: To compare and quantify the impact of different mitigation technologies, we used a globin transcript spike-in strategy to synthetically generate a globin-induced signature and then mitigate it with the three different technologies. Biological differences, in globin transcript spiked samples, were modeled by supplementing with either 1% of liver or 1% brain total RNA. In order to demonstrate the biological utility of a robust globin artifact mitigation strategy in biomarker discovery, we treated whole blood ex vivo with suberoylanilide hydroxamic acid (SAHA) and compared the overlap between the obtained signatures and signatures of a known biomarker derived from SAHA-treated cell lines and PBMCs of SAHA-treated patients. RESULTS: We found cDNA hybridization targets detect at least 20 times more specific differentially expressed signatures (2597) between 1% liver and 1% brain in globin-supplemented samples than the PNA (117) or no treatment (97) method at FDR = 10% and p-value < 3x10-3. In addition, we found that the ex vivo derived gene expression profile was highly concordant with that of the previously identified SAHA pharmacodynamic biomarkers. CONCLUSIONS: We conclude that an amplification method for gene expression profiling employing cDNA targets effectively mitigates the negative impact on data of abundant globin transcripts and greatly improves the ability to identify relevant gene expression based pharmacodynamic biomarkers from whole blood.


Subject(s)
DNA, Complementary/genetics , Gene Expression Profiling , RNA/blood , Female , Humans , Male , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis
2.
Mol Syst Biol ; 6: 402, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20739924

ABSTRACT

Tumorigenesis involves multistep genetic alterations. To elucidate the microRNA (miRNA)-gene interaction network in carcinogenesis, we examined their genome-wide expression profiles in 96 pairs of tumor/non-tumor tissues from hepatocellular carcinoma (HCC). Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-122 is under-expressed in HCC and that increased expression of miR-122 seed-matched genes leads to a loss of mitochondrial metabolic function. Furthermore, the miR-122 secondary targets, which decrease in expression, are good prognostic markers for HCC. Transcriptome profiling data from additional 180 HCC and 40 liver cirrhotic patients in the same cohort were used to confirm the anti-correlation of miR-122 primary and secondary target gene sets. The HCC findings can be recapitulated in mouse liver by silencing miR-122 with antagomir treatment followed by gene-expression microarray analysis. In vitro miR-122 data further provided a direct link between induction of miR-122-controlled genes and impairment of mitochondrial metabolism. In conclusion, miR-122 regulates mitochondrial metabolism and its loss may be detrimental to sustaining critical liver function and contribute to morbidity and mortality of liver cancer patients.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/genetics , Liver Neoplasms/genetics , MicroRNAs/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Animals , Cell Line, Tumor , Down-Regulation/genetics , Energy Metabolism/genetics , Gene Expression Profiling , Genes, Mitochondrial/genetics , Humans , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Sequence Homology, Nucleic Acid , Signal Transduction/genetics , Survival Analysis , Up-Regulation/genetics
3.
J Photochem Photobiol B ; 78(2): 135-40, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15664500

ABSTRACT

One of the 'second generation' photosensitizing agents is N-acetyl chlorin e6 (NPe6). This product has a strong absorbance band at 665 nm, permitting treatment at a greater depth of tumor than earlier agents based on porphyrin structures. We examined the effects of fractionated drug administration on photodynamic efficacy. Prior studies had shown that it is the level of NPe6 in the circulation that predicts for photodynamic efficacy, indicating vascular shut-down to be the predominant mode of tumor control. Although pharmacokinetic studies revealed that >99% of NPe6 was lost from the circulation, it appears that a fractionated dosage protocol can promote photodamage to neoplastic tissue in vivo. This study also indicated the potential utility of an implantable micro array for tumor irradiation.


Subject(s)
Neoplasms/drug therapy , Neoplasms/pathology , Photochemotherapy , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/therapeutic use , Porphyrins/administration & dosage , Porphyrins/therapeutic use , Analysis of Variance , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred C57BL , Photosensitizing Agents/blood , Porphyrins/blood , Xenograft Model Antitumor Assays
4.
Mol Pharmacol ; 65(4): 1016-28, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15044632

ABSTRACT

Irradiation of murine hepatoma 1c1c7 cultures presensitized with N-aspartyl chlorin e6 (NPe6) caused lysosomal disruption and apoptosis. Tao cells, a variant of the 1c1c7 line having lower aryl hydrocarbon receptor (AhR) contents, were resistant to the pro-apoptotic effects of NPe6 in the same photodynamic therapy protocol. Colony-forming assays were used to establish light dose-dependent and NPe6 concentration-dependent cytotoxicity curves. Lysosomal breakage and cell survival paralleled one another in both cell types. When analyzed at comparable lethal dose conditions, the onset of apoptosis was delayed, and the magnitude of the apoptotic response was muted in Tao cells, as assessed by morphology, annexin V binding, caspase-3 activities, and analyses of Bid, procaspase-9, and pro-caspase-3 cleavage. In contrast, the kinetics/magnitude of pro-caspase-3 activation in the two cell lines were identical after exposure to HA14 -1 or Jo2 antibody, inducers of the intrinsic and extrinsic apoptotic pathways, respectively. Tao endosomal/lysosomal extracts contained approximately 50%, 35%, and 55% of the Bid cleavage and cathepsin B and D activities of 1c1c7 endosomes/lysosomes, respectively. Western blot analyses confirmed reduced cathepsin B/D contents in Tao cells. Analyses of 1c1c7/Tao variants engineered to express antisense/sense AhR constructs suggested that endosomal/lysosomal cathepsin B and D content, but not whole cell content, correlated with AhR expression. These studies provide a mechanism for the resistance of Tao cultures to the proapoptotic effects of a protocol causing targeted disruption of lysosomes. They also suggest that the AhR, in the absence of exogenous ligand, may affect the trafficking/processing of proteases normally found in endosomes/lysosomes.


Subject(s)
Antineoplastic Agents/pharmacology , Lysosomes/drug effects , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Receptors, Aryl Hydrocarbon/physiology , Animals , Apoptosis , BH3 Interacting Domain Death Agonist Protein , Benzopyrans/pharmacology , Carcinoma, Hepatocellular/pathology , Carrier Proteins/metabolism , Cathepsins/metabolism , Liver Neoplasms/pathology , Lysosomes/metabolism , Mice , Nitriles/pharmacology , Triazenes/pharmacology , Tumor Cells, Cultured , fas Receptor/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...