Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 31(1): 28-39, 2024 01.
Article in English | MEDLINE | ID: mdl-38001254

ABSTRACT

The ability of cells to mount an interferon response to virus infections depends on intracellular nucleic acid sensing pattern recognition receptors (PRRs). RIG-I is an intracellular PRR that binds short double-stranded viral RNAs to trigger MAVS-dependent signalling. The RIG-I/MAVS signalling complex requires the coordinated activity of multiple kinases and E3 ubiquitin ligases to activate the transcription factors that drive type I and type III interferon production from infected cells. The linear ubiquitin chain assembly complex (LUBAC) regulates the activity of multiple receptor signalling pathways in both ligase-dependent and -independent ways. Here, we show that the three proteins that constitute LUBAC have separate functions in regulating RIG-I signalling. Both HOIP, the E3 ligase capable of generating M1-ubiquitin chains, and LUBAC accessory protein HOIL-1 are required for viral RNA sensing by RIG-I. The third LUBAC component, SHARPIN, is not required for RIG-I signalling. These data cement the role of LUBAC as a positive regulator of RIG-I signalling and as an important component of antiviral innate immune responses.


Subject(s)
RNA Viruses , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Signal Transduction , DEAD Box Protein 58/genetics , RNA Viruses/metabolism
2.
J Agric Food Chem ; 70(32): 9980-9989, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35921686

ABSTRACT

Thermal treatment applied during the cooking of pulses leads to denaturation and even aggregation of the proteins, which may impact protein digestibility. Thermal transitions of lentil, chickpea, and bean proteins were studied using differential scanning calorimetry (DSC). Protein-enriched samples were obtained by dry air classification of dehulled seeds and were heated to 160 °C, with water contents ranging from 0.2 to 4 kg/kg on a dry basis. The DSC peaks of the resulting endotherms were successfully modeled as overlapping Gaussian functions. The denaturation temperatures were modeled as a function of the temperature according to the Flory-Huggins theory. The modeling allows for the calculation of the degree of protein transition for any temperature and moisture condition. The denaturation diagrams reflect the different protein compositions of lentil, chickpea, and bean (particularly the 11S/7S globulin ratio). Chickpea proteins were more thermally stable than those from lentil and bean. Proteins underwent an irreversible transition, suggesting that unfolding and aggregation were coupled.


Subject(s)
Cicer , Fabaceae , Lens Plant , Calorimetry, Differential Scanning , Fabaceae/chemistry , Protein Denaturation , Water
4.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Article in English | MEDLINE | ID: mdl-34138976

ABSTRACT

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Murine hepatitis virus/drug effects , Unfolded Protein Response/drug effects , Activating Transcription Factor 6/metabolism , Animals , Antiviral Agents/therapeutic use , Cell Line , Chlorocebus aethiops , Drug Delivery Systems , Endoribonucleases/metabolism , HEK293 Cells , Humans , Mice , Protein Serine-Threonine Kinases/metabolism , RNA-Seq , Vero Cells , Viral Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...