Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743766

ABSTRACT

PURPOSE: Antibody-drug conjugates (ADCs) are targeted therapies with robust efficacy in solid cancers, and there is intense interest in using EGFR-specific ADCs to target EGFR-amplified glioblastoma (GBM). Given the molecular heterogeneity of GBM, bystander activity of ADCs may be important for determining treatment efficacy. In this study, the activity and toxicity of two EGFR-targeted ADCs, Losatuxizumab vedotin (ABBV-221) and Depatuxizumab mafodotin (Depatux-M), with similar auristatin toxins, were compared in GBM patient-derived xenografts (PDXs) and normal murine brain following direct infusion by convection enhanced delivery (CED). METHODS: EGFRviii-amplified and non-amplified GBM PDXs were used to determine in vitro cytotoxicity, in vivo efficacy, and bystander activities of ABBV-221 and Depatux-M. Non-tumor bearing mice were used to evaluate pharmacokinetics and toxicity of ADCs using LC-MS/MS and immunohistochemistry. RESULTS: CED improved intracranial efficacy of Depatux-M and ABBV-221 in three EGFRviii-amplified GBM PDX models (Median survival: 125 to >300 days vs 20-49 days with isotype-control AB095). Both ADCs had comparable in vitro and in vivo efficacy. However, neuronal toxicity and CD68+ microglia/macrophage infiltration were significantly higher in brains infused with ABBV-221, with the cell-permeable MMAE, as compared to Depatux-M, with the cell-impermeant MMAF. CED infusion of ABBV-221 into brain or incubation of ABBV-221 with normal brain homogenate resulted in significant release of MMAE, which is consistent with linker instability in the brain microenvironment. CONCLUSION: EGFR-targeting ADCs are promising therapeutic options for GBM when delivered intra-tumorally by CED. However, the linker and payload for the ADC must be carefully considered to maximize the therapeutic window.

2.
Pharmaceutics ; 15(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37111587

ABSTRACT

The blood-brain barrier (BBB) is a major hurdle for the development of systemically delivered drugs against diseases of the central nervous system (CNS). Because of this barrier there is still a huge unmet need for the treatment of these diseases, despite years of research efforts across the pharmaceutical industry. Novel therapeutic entities, such as gene therapy and degradomers, have become increasingly popular in recent years, but have not been the focus for CNS indications so far. To unfold their full potential for the treatment of CNS diseases, these therapeutic entities will most likely have to rely on innovative delivery technologies. Here we will describe and assess approaches, both invasive and non-invasive, that can enable, or at least increase, the probability of a successful drug development of such novel therapeutics for CNS indications.

3.
Neurooncol Adv ; 4(1): vdac130, 2022.
Article in English | MEDLINE | ID: mdl-36071925

ABSTRACT

Background: EGFR targeting antibody-drug conjugates (ADCs) are highly effective against EGFR-amplified tumors, but poor distribution across the blood-brain barrier (BBB) limits their efficacy in glioblastoma (GBM) when administered systemically. We studied whether convection-enhanced delivery (CED) can be used to safely infuse ADCs into orthotopic patient-derived xenograft (PDX) models of EGFRvIII mutant GBM. Methods: The efficacy of the EGFR-targeted ADCs depatuxizumab mafodotin (Depatux-M) and Serclutamab talirine (Ser-T) was evaluated in vitro and in vivo. CED was performed in nontumor and tumor-bearing mice. Immunostaining was used to evaluate ADC distribution, pharmacodynamic effects, and normal cell toxicity. Results: Dose-finding studies in orthotopic GBM6 identified single infusion of 2 µg Ser-T and 60 µg Depatux-M as safe and effective associated with extended survival prolongation (>300 days and 95 days, respectively). However, with serial infusions every 21 days, four Ser-T doses controlled tumor growth but was associated with lethal toxicity approximately 7 days after the final infusion. Limiting dosing to two infusions in GBM108 provided profound median survival extension of over 200 days. In contrast, four Depatux-M CED doses were well tolerated and significantly extended survival in both GBM6 (158 days) and GBM108 (310 days). In a toxicity analysis, Ser-T resulted in a profound loss in NeuN+ cells and markedly elevated GFAP staining, while Depatux-M was associated only with modest elevation in GFAP staining. Conclusion: CED of Depatux-M is well tolerated and results in extended survival in orthotopic GBM PDXs. In contrast, CED of Ser-T was associated with a much narrower therapeutic window.

4.
Pharmaceutics ; 14(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890344

ABSTRACT

Cerebrospinal fluid (CSF) microcirculation refers to CSF flow through brain or spinal parenchyma. CSF enters the tissue along the perivascular spaces of the penetrating arteries where it mixes with the interstitial fluid circulating through the extracellular space. The potential of harnessing CSF microcirculation for drug delivery to deep areas of the brain remains an area of controversy. This paper sheds additional light on this debate by showing that ABT-806, an EGFR-specific humanized IgG1 monoclonal antibody (mAb), reaches both the cortical and the deep subcortical layers of the rat brain following intra-cisterna magna (ICM) injection. This is significant because the molecular weight of this mAb (150 kDa) is highest among proteins reported to have penetrated deeply into the brain via the CSF route. This finding further confirms the potential of CSF circulation as a drug delivery system for a large subset of molecules offering promise for the treatment of various brain diseases with poor distribution across the blood-brain barrier (BBB). ABT-806 is the parent antibody of ABT-414, an antibody-drug conjugate (ADC) developed to engage EGFR-overexpressing glioblastoma (GBM) tumor cells. To pave the way for future efficacy studies for the treatment of GBM with an intra-CSF administered ADC consisting of a conjugate of ABT-806 (or of one of its close analogs), we verified in vivo the binding of ABT-414 to GBM tumor cells implanted in the cisterna magna and collected toxicity data from both the central nervous system (CNS) and peripheral tissues. The current study supports further exploration of harnessing CSF microcirculation as an alternative to systemic delivery to achieve higher brain tissue exposure, while reducing previously reported ocular toxicity with ABT-414.

5.
Adv Drug Deliv Rev ; 173: 20-59, 2021 06.
Article in English | MEDLINE | ID: mdl-33705875

ABSTRACT

Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.


Subject(s)
Brain/metabolism , Cerebrospinal Fluid/metabolism , Drug Delivery Systems , Pharmaceutical Preparations/metabolism , Cerebrospinal Fluid/chemistry , Humans , Pharmaceutical Preparations/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...