Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
J Am Heart Assoc ; 13(4): e032646, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38353216

ABSTRACT

BACKGROUND: The renal sympathetic nervous system modulates systemic blood pressure, cardiac performance, and renal function. Pathological increases in renal sympathetic nerve activity contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). We investigated the effects of renal sympathetic denervation performed at early or late stages of HFpEF progression. METHODS AND RESULTS: Male ZSF1 obese rats were subjected to radiofrequency renal denervation (RF-RDN) or sham procedure at either 8 weeks or 20 weeks of age and assessed for cardiovascular function, exercise capacity, and cardiorenal fibrosis. Renal norepinephrine and renal nerve tyrosine hydroxylase staining were performed to quantify denervation following RF-RDN. In addition, renal injury, oxidative stress, inflammation, and profibrotic biomarkers were evaluated to determine pathways associated with RDN. RF-RDN significantly reduced renal norepinephrine and tyrosine hydroxylase content in both study cohorts. RF-RDN therapy performed at 8 weeks of age attenuated cardiac dysfunction, reduced cardiorenal fibrosis, and improved endothelial-dependent vascular reactivity. These improvements were associated with reductions in renal injury markers, expression of renal NLR family pyrin domain containing 3/interleukin 1ß, and expression of profibrotic mediators. RF-RDN failed to exert beneficial effects when administered in the 20-week-old HFpEF cohort. CONCLUSIONS: Our data demonstrate that early RF-RDN therapy protects against HFpEF disease progression in part due to the attenuation of renal fibrosis and inflammation. In contrast, the renoprotective and left ventricular functional improvements were lost when RF-RDN was performed in later HFpEF progression. These results suggest that RDN may be a viable treatment option for HFpEF during the early stages of this systemic inflammatory disease.


Subject(s)
Heart Failure , Humans , Male , Rats , Animals , Heart Failure/metabolism , Stroke Volume , Tyrosine 3-Monooxygenase/metabolism , Kidney/metabolism , Sympathectomy/methods , Inflammation/metabolism , Norepinephrine , Fibrosis , Denervation
3.
Am J Physiol Heart Circ Physiol ; 326(1): H278-H290, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38038717

ABSTRACT

Smoking and high-fat diet (HFD) consumption are two modifiable risk factors for cardiovascular (CV) diseases, and individuals who are overweight or obese due to unhealthy diet are more likely to use tobacco products. In this study, we aim to investigate the combined effects of nicotine (the addictive component of all tobacco products) and HFD on CV health, which are poorly understood. C57BL/6N male mice were placed on either HFD (60 kcal% fat) or regular diet (22 kcal% fat) and exposed to air or nicotine vapor for 10-12 wk. CV function was monitored by echocardiography and radiotelemetry, with left ventricular (LV) catheterization and aortic ring vasoreactivity assays performed at end point. Mice on HFD exhibited increased heart rate and impaired parasympathetic tone, whereas nicotine exposure increased sympathetic vascular tone as evidenced by increased blood pressure (BP) response to ganglionic blockade. Although neither nicotine nor HFD alone or in combination significantly altered BP, nicotine exposure disrupted circadian BP regulation with reduced BP dipping. LV catheterization revealed that combined exposure to nicotine and HFD led to LV diastolic dysfunction with increased LV end-diastolic pressure (LVEDP). Moreover, combined exposure resulted in increased inhibitory phosphorylation of endothelial nitric oxide synthase and greater impairment of endothelium-dependent vasodilation. Finally, a small cohort of C57BL/6N females with combined exposure exhibited similar increases in LVEDP, indicating that both sexes are susceptible to the combined effect of nicotine and HFD. In summary, combined exposure to nicotine and HFD leads to greater CV harm, including both additive and new-onset CV dysfunction.NEW & NOTEWORTHY Nicotine product usage and high-fat diet consumption are two modifiable risk factors for cardiovascular diseases. Here, we demonstrate that in mice, combined exposure to inhaled nicotine and high-fat diet results in unique cardiovascular consequences compared with either treatment alone, including left ventricular diastolic dysfunction, dysregulation of blood pressure, autonomic dysfunction, and greater impairment of endothelium-dependent vasorelaxation. These findings indicate that individuals who consume both nicotine products and high-fat diet have distinctive cardiovascular risks.


Subject(s)
Diet, High-Fat , Ventricular Dysfunction, Left , Humans , Female , Mice , Male , Animals , Diet, High-Fat/adverse effects , Nicotine/toxicity , Mice, Inbred C57BL , Vasodilation , Blood Pressure , Ventricular Dysfunction, Left/chemically induced
5.
J Am Heart Assoc ; 12(4): e028480, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36752224

ABSTRACT

Background Recent studies have suggested that cardiac nitrosative stress mediated by pathological overproduction of nitric oxide (NO) via inducible NO synthase (iNOS) contributes to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). Other studies have suggested that endothelial NO synthase (eNOS) dysfunction and attenuated NO bioavailability contribute to HFpEF morbidity and mortality. We sought to further investigate dysregulated NO signaling and to examine the effects of a NO-based dual therapy (sodium nitrite+hydralazine) following the onset of HFpEF using a "2-hit" murine model. Methods and Results Nine-week-old male C57BL/6 N mice (n=15 per group) were treated concurrently with high-fat diet and N(ω)-nitro-L-arginine methyl ester (L-NAME) (0.5 g/L per day) via drinking water for 10 weeks. At week 5, mice were randomized into either vehicle (normal saline) or combination treatment with sodium nitrite (75 mg/L in the drinking water) and hydralazine (2.0 mg/kg IP, BID). Cardiac structure and function were monitored with echocardiography and invasive hemodynamic measurements. Cardiac mitochondrial respiration, aortic vascular function, and exercise performance were also evaluated. Circulating and myocardial nitrite were measured to determine the bioavailability of NO. Circulating markers of oxidative or nitrosative stress as well as systemic inflammation were also determined. Severe HFpEF was evident by significantly elevated E/E', LVEDP, and Tau in mice treated with L-NAME and HFD, which was associated with impaired NO bioavailability, mitochondrial respiration, aortic vascular function, and exercise capacity. Treatment with sodium nitrite and hydralazine restored NO bioavailability, reduced oxidative and nitrosative stress, preserved endothelial function and mitochondrial respiration, limited the fibrotic response, and improved exercise capacity, ultimately attenuating the severity of "two-hit" HFpEF. Conclusions Our data demonstrate that nitrite, a well-established biomarker of NO bioavailability and a physiological source of NO, is significantly reduced in the heart and circulation in the "2-hit" mouse HFpEF model. Furthermore, sodium nitrite+hydralazine combined therapy significantly attenuated the severity of HFpEF in the "2-hit" cardiometabolic HFpEF. These data suggest that supplementing NO-based therapeutics with a potent antioxidant and vasodilator agent may result in synergistic benefits for the treatment of HFpEF.


Subject(s)
Drinking Water , Heart Failure , Mice , Male , Animals , Heart Failure/drug therapy , Sodium Nitrite , Stroke Volume/physiology , NG-Nitroarginine Methyl Ester , Disease Models, Animal , Mice, Inbred C57BL , Hydralazine/pharmacology , Nitric Oxide Synthase
6.
Nitric Oxide ; 132: 1-7, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36690137

ABSTRACT

It is now more than 35 years since endothelium derived relaxing factor was identified as nitric oxide (NO). The last few decades have seen an explosion around nitric oxide biochemistry, physiology and clinical translation. The science reveals that all chronic disease is associated with decreased blood flow to the affected organ which results in increased inflammation, oxidative stress and immune dysfunction. This is true for cardiovascular disease, neurological disease, kidney, lung, liver disorders and every other major disorder. Since nitric oxide controls and regulates blood flow, oxygen and nutrient delivery to every cell, tissue and organ in the body and also mitigates inflammation, oxidative stress and immune dysfunction, a focus on restoring nitric oxide production is an obvious therapeutic strategy for a number of poorly managed chronic diseases. Since dietary nitrate is a major contributor to endogenous nitric oxide production, it should be considered as a means of therapy and restoration of nitric oxide. This review will update on the current state of the science and effects of inorganic nitrate administered through the diet on several chronic conditions and reveal how much is needed. It is clear now that antiseptic mouthwash and use of antacids disrupt nitrate metabolism to nitric oxide leading to clinical symptoms of nitric oxide deficiency. Based on the science, nitrate should be considered an indispensable nutrient that should be accounted for in dietary guidelines.


Subject(s)
Cardiovascular Diseases , Nitrates , Humans , Nitrites/metabolism , Nitric Oxide/metabolism , Cardiovascular Diseases/metabolism , Inflammation/drug therapy
7.
Circ Res ; 132(2): 154-166, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36575984

ABSTRACT

BACKGROUND: Hydrogen sulfide is a critical endogenous signaling molecule that exerts protective effects in the setting of heart failure. Cystathionine γ-lyase (CSE), 1 of 3 hydrogen-sulfide-producing enzyme, is predominantly localized in the vascular endothelium. The interaction between the endothelial CSE-hydrogen sulfide axis and endothelial-mesenchymal transition, an important pathological process contributing to the formation of fibrosis, has yet to be investigated. METHODS: Endothelial-cell-specific CSE knockout and Endothelial cell-CSE overexpressing mice were subjected to transverse aortic constriction to induce heart failure with reduced ejection fraction. Cardiac function, vascular reactivity, and treadmill exercise capacity were measured to determine the severity of heart failure. Histological and gene expression analyses were performed to investigate changes in cardiac fibrosis and the activation of endothelial-mesenchymal transition. RESULTS: Endothelial-cell-specific CSE knockout mice exhibited increased endothelial-mesenchymal transition and reduced nitric oxide bioavailability in the myocardium, which was associated with increased cardiac fibrosis, impaired cardiac and vascular function, and worsened exercise performance. In contrast, genetic overexpression of CSE in endothelial cells led to increased myocardial nitric oxide, decreased endothelial-mesenchymal transition and cardiac fibrosis, preserved cardiac and endothelial function, and improved exercise capacity. CONCLUSIONS: Our data demonstrate that endothelial CSE modulates endothelial-mesenchymal transition and ameliorate the severity of pressure-overload-induced heart failure, in part, through nitric oxide-related mechanisms. These data further suggest that endothelium-derived hydrogen sulfide is a potential therapeutic for the treatment of heart failure with reduced ejection fraction.


Subject(s)
Heart Failure , Hydrogen Sulfide , Ventricular Dysfunction, Left , Mice , Animals , Hydrogen Sulfide/metabolism , Endothelial Cells/metabolism , Nitric Oxide/metabolism , Mice, Knockout , Endothelium, Vascular/metabolism , Fibrosis
8.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36519539

ABSTRACT

Atherosclerosis contributes to the majority of deaths related to cardiovascular disease (CVD). Recently, the nonspecific inflammatory biomarker soluble urokinase plasminogen activator receptor (suPAR) has shown prognostic value in patients with CVD; however, it remains unclear whether suPAR participates in the disease process. In this issue of the JCI, Hindy and colleagues report on their evaluation of a multi-ethnic cohort of over 5,000 participants without known CVD. High suPAR levels correlated with incident CVD and atherosclerosis. Genetic analysis revealed two variants associated with the suPAR-encoding gene (PLAUR) with higher plasma suPAR levels. Notably, a mouse model with high suPAR levels possessed aortic tissue with a proinflammatory phenotype, including monocytes with enhanced chemotaxis similar to that seen in atherogenesis. These findings suggest a causal relationship between suPAR and coronary artery calcification and have clinical implications that extend to inflammatory disorders beyond CVD.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Animals , Mice , Humans , Receptors, Urokinase Plasminogen Activator/genetics , Cardiovascular Diseases/genetics , Risk Factors , Biomarkers , Atherosclerosis/genetics
10.
Clin Sci (Lond) ; 136(12): 973-987, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35678315

ABSTRACT

Cigarette smoking remains the leading modifiable risk factor for cardiopulmonary diseases; however, the effects of nicotine alone on cardiopulmonary function remain largely unknown. Previously, we have shown that chronic nicotine vapor inhalation in mice leads to the development of pulmonary hypertension (PH) with right ventricular (RV) remodeling. The present study aims to further examine the cardiopulmonary effects of nicotine and the role of the α7 nicotinic acetylcholine receptor (α7-nAChR), which is widely expressed in the cardiovascular system. Wild-type (WT) and α7-nAChR knockout (α7-nAChR-/-) mice were exposed to room air (control) or nicotine vapor daily for 12 weeks. Consistent with our previous study, echocardiography and RV catheterization reveal that male WT mice developed increased RV systolic pressure with RV hypertrophy and dilatation following 12-week nicotine vapor exposure; in contrast, these changes were not observed in male α7-nAChR-/- mice. In addition, chronic nicotine inhalation failed to induce PH and RV remodeling in female mice regardless of genotype. The effects of nicotine on the vasculature were further examined in male mice. Our results show that chronic nicotine inhalation led to impaired acetylcholine-mediated vasodilatory response in both thoracic aortas and pulmonary arteries, and these effects were accompanied by altered endothelial nitric oxide synthase phosphorylation (enhanced inhibitory phosphorylation at threonine 495) and reduced plasma nitrite levels in WT but not α7-nAChR-/- mice. Finally, RNA sequencing revealed up-regulation of multiple inflammatory pathways in thoracic aortas from WT but not α7-nAChR-/- mice. We conclude that the α7-nAChR mediates chronic nicotine inhalation-induced PH, RV remodeling and vascular dysfunction.


Subject(s)
Nicotine , alpha7 Nicotinic Acetylcholine Receptor , Acetylcholine/metabolism , Administration, Inhalation , Animals , Aorta, Thoracic/drug effects , Female , Male , Mice , Nicotine/administration & dosage , Pulmonary Artery/drug effects , Up-Regulation , Vasodilation/drug effects , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
11.
Circ Res ; 131(3): 222-235, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35701874

ABSTRACT

BACKGROUND: Hydrogen sulfide (H2S) exerts mitochondria-specific actions that include the preservation of oxidative phosphorylation, biogenesis, and ATP synthesis, while inhibiting cell death. 3-MST (3-mercaptopyruvate sulfurtransferase) is a mitochondrial H2S-producing enzyme whose functions in the cardiovascular disease are not fully understood. In the current study, we investigated the effects of global 3-MST deficiency in the setting of pressure overload-induced heart failure. METHODS: Human myocardial samples obtained from patients with heart failure undergoing cardiac surgeries were probed for 3-MST protein expression. 3-MST knockout mice and C57BL/6J wild-type mice were subjected to transverse aortic constriction to induce pressure overload heart failure with reduced ejection fraction. Cardiac structure and function, vascular reactivity, exercise performance, mitochondrial respiration, and ATP synthesis efficiency were assessed. In addition, untargeted metabolomics were utilized to identify key pathways altered by 3-MST deficiency. RESULTS: Myocardial 3-MST was significantly reduced in patients with heart failure compared with nonfailing controls. 3-MST KO mice exhibited increased accumulation of branched-chain amino acids in the myocardium, which was associated with reduced mitochondrial respiration and ATP synthesis, exacerbated cardiac and vascular dysfunction, and worsened exercise performance following transverse aortic constriction. Restoring myocardial branched-chain amino acid catabolism with 3,6-dichlorobenzo1[b]thiophene-2-carboxylic acid (BT2) and administration of a potent H2S donor JK-1 ameliorates the detrimental effects of 3-MST deficiency in heart failure with reduced ejection fraction. CONCLUSIONS: Our data suggest that 3-MST derived mitochondrial H2S may play a regulatory role in branched-chain amino acid catabolism and mediate critical cardiovascular protection in heart failure.


Subject(s)
Heart Failure , Hydrogen Sulfide , Ventricular Dysfunction, Left , Adenosine Triphosphate/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Heart Failure/metabolism , Humans , Hydrogen Sulfide/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Myocardium/metabolism , Ventricular Dysfunction, Left/metabolism
13.
Antioxidants (Basel) ; 10(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808673

ABSTRACT

Hydrogen sulfide (H2S) is an endogenous, gaseous signaling molecule that plays a critical role in cardiac and vascular biology. H2S regulates vascular tone and oxidant defenses and exerts cytoprotective effects in the heart and circulation. Recent studies indicate that H2S modulates various components of metabolic syndrome, including obesity and glucose metabolism. This review will discuss studies exhibiting H2S -derived cardioprotective signaling in heart failure with reduced ejection fraction (HFrEF). We will also discuss the role of H2S in metabolic syndrome and heart failure with preserved ejection fraction (HFpEF).

14.
JACC Basic Transl Sci ; 6(2): 154-170, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33665515

ABSTRACT

A lack of preclinical large animal models of heart failure with preserved ejection fraction (HFpEF) that recapitulate this comorbid-laden syndrome has led to the inability to tease out mechanistic insights and to test novel therapeutic strategies. This study developed a large animal model that integrated multiple comorbid determinants of HFpEF in a miniswine breed that exhibited sensitivity to obesity, metabolic syndrome, and vascular disease with overt clinical signs of heart failure. The combination of a Western diet and 11-deoxycorticosterone acetate salt-induced hypertension in the Göttingen miniswine led to the development of a novel large animal model of HFpEF that exhibited multiorgan involvement and a full spectrum of comorbidities associated with human HFpEF.

15.
Circ Res ; 128(4): 508-510, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33600232

Subject(s)
Heart
16.
Annu Rev Physiol ; 83: 39-58, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33074771

ABSTRACT

Heart failure (HF) is a global pandemic with a poor prognosis after hospitalization. Despite HF syndrome complexities, evidence of significant sympathetic overactivity in the manifestation and progression of HF is universally accepted. Confirmation of this dogma is observed in guideline-directed use of neurohormonal pharmacotherapies as a standard of care in HF. Despite reductions in morbidity and mortality, a growing patient population is resistant to these medications, while off-target side effects lead to dismal patient adherence to lifelong drug regimens. Novel therapeutic strategies, devoid of these limitations, are necessary to attenuate the progression of HF pathophysiology while continuing to reduce morbidity and mortality. Renal denervation is an endovascular procedure, whereby the ablation of renal nerves results in reduced renal afferent and efferent sympathetic nerve activity in the kidney and globally. In this review, we discuss the current state of preclinical and clinical research related to renal sympathetic denervation to treat HF.


Subject(s)
Heart Failure/therapy , Sympathectomy/methods , Animals , Disease Progression , Heart Failure/physiopathology , Humans , Kidney/physiopathology
17.
J Am Heart Assoc ; 9(19): e017544, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32990120

ABSTRACT

Background Hydrogen sulfide (H2S) is an important endogenous physiological signaling molecule and exerts protective properties in the cardiovascular system. Cystathionine γ-lyase (CSE), 1 of 3 H2S producing enzyme, is predominantly localized in the vascular endothelium. However, the regulation of CSE in vascular endothelium remains incompletely understood. Methods and Results We generated inducible endothelial cell-specific CSE overexpressed transgenic mice (EC-CSE Tg) and endothelial cell-specific CSE knockout mice (EC-CSE KO), and investigated vascular function in isolated thoracic aorta, treadmill exercise capacity, and myocardial injury following ischemia-reperfusion in these mice. Overexpression of CSE in endothelial cells resulted in increased circulating and myocardial H2S and NO, augmented endothelial-dependent vasorelaxation response in thoracic aorta, improved exercise capacity, and reduced myocardial-reperfusion injury. In contrast, genetic deletion of CSE in endothelial cells led to decreased circulating H2S and cardiac NO production, impaired endothelial dependent vasorelaxation response and reduced exercise capacity. However, myocardial-reperfusion injury was not affected by genetic deletion of endothelial cell CSE. Conclusions CSE-derived H2S production in endothelial cells is critical in maintaining endothelial function, exercise capacity, and protecting against myocardial ischemia/reperfusion injury. Our data suggest that the endothelial NO synthase-NO pathway is likely involved in the beneficial effects of overexpression of CSE in the endothelium.


Subject(s)
Cystathionine gamma-Lyase/metabolism , Endothelial Cells/metabolism , Exercise Tolerance/physiology , Hydrogen Sulfide/metabolism , Myocardial Reperfusion Injury/metabolism , Nitric Oxide/metabolism , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiopathology , Mice , Mice, Transgenic , Myocardium/metabolism , Myocardium/pathology , Nitric Oxide Synthase/metabolism , Signal Transduction
18.
JACC Basic Transl Sci ; 5(7): 699-714, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32760857

ABSTRACT

With the complexities that surround myocardial ischemia/reperfusion (MI/R) injury, therapies adjunctive to reperfusion that elicit beneficial pleiotropic effects and do not overlap with standard of care are necessary. This study found that the mitochondrial-derived peptide S14G-humanin (HNG) (2 mg/kg), an analogue of humanin, reduced infarct size in a large animal model of MI/R. However, when ischemic time was increased, the infarct-sparing effects were abolished with the same dose of HNG. Thus, although the 60-min MI/R study showed that HNG cardioprotection translates beyond small animal models, further studies are needed to optimize HNG therapy for longer, more patient-relevant periods of cardiac ischemia.

19.
J Am Heart Assoc ; 9(10): e016223, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32390485

ABSTRACT

Background Patients at increased risk for coronary artery disease and adverse prognosis during heart failure exhibit increased levels of circulating trimethylamine N-oxide (TMAO), a metabolite formed in the metabolism of dietary phosphatidylcholine. We investigated the efficacy of dietary withdrawal of TMAO as well as use of a gut microbe-targeted inhibitor of TMAO production, on cardiac function and structure during heart failure. Methods and Results Male C57BLK/6J mice were fed either control diet, a diet containing TMAO (0.12% wt/wt), a diet containing choline (1% wt/wt), or a diet containing choline (1% wt/wt) plus a microbial choline trimethylamine lyase inhibitor, iodomethylcholine (0.06% wt/wt), starting 3 weeks before transverse aortic constriction. At 6 weeks after transverse aortic constriction, a subset of animals in the TMAO group were switched to a control diet for the remainder of the study. Left ventricular structure and function were monitored at 3-week intervals. Withdrawal of TMAO from the diet attenuated adverse ventricular remodeling and improved cardiac function compared with the TMAO group. Similarly, inhibiting gut microbial conversion of choline to TMAO with a choline trimethylamine lyase inhibitor, iodomethylcholine, improved remodeling and cardiac function compared with the choline-fed group. Conclusions These experimental findings are clinically relevant, and they demonstrate that TMAO levels are modifiable following long-term exposure periods with either dietary withdrawal of TMAO or gut microbial blockade of TMAO generation. Furthermore, these therapeutic strategies to reduce circulating TMAO levels mitigate the negative effects of dietary choline and TMAO in heart failure.


Subject(s)
Bacteria/drug effects , Enzyme Inhibitors/pharmacology , Gastrointestinal Microbiome/drug effects , Heart Failure/drug therapy , Intestines/microbiology , Methylamines/metabolism , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Bacteria/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Choline/metabolism , Disease Models, Animal , Down-Regulation , Fibrosis , Heart Failure/microbiology , Heart Failure/pathology , Heart Failure/physiopathology , Lyases/antagonists & inhibitors , Lyases/metabolism , Male , Mice, Inbred C57BL , Myocardium/pathology
20.
Biochem Pharmacol ; 176: 113833, 2020 06.
Article in English | MEDLINE | ID: mdl-32027885

ABSTRACT

RATIONALE: Hydrogen sulfide (H2S) is a physiological mediator that regulates cardiovascular homeostasis. Three major enzymes contribute to the generation of endogenously produced H2S, namely cystathionine γ-lyase (CSE), cystathionine ß-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Although the biological roles of CSE and CBS have been extensively investigated in the cardiovascular system, very little is known about that of 3-MST. In the present study we determined the importance of 3-MST in the heart and blood vessels, using a genetic model with a global 3-MST deletion. RESULTS: 3-MST is the most abundant transcript in the mouse heart, compared to CSE and CBS. 3-MST was mainly localized in smooth muscle cells and cardiomyocytes, where it was present in both the mitochondria and the cytosol. Levels of serum and cardiac H2S species were not altered in adult young (2-3 months old) 3-MST-/- mice compared to WT animals. No significant changes in the expression of CSE and CBS were observed. Additionally, 3-MST-/- mice had normal left ventricular structure and function, blood pressure and vascular reactivity. Interestingly, genetic ablation of 3-MST protected mice against myocardial ischemia reperfusion injury, and abolished the protection offered by ischemic pre- and post-conditioning. 3-MST-/- mice showed lower expression levels of thiosulfate sulfurtransferase, lower levels of cellular antioxidants and elevated basal levels of cardiac reactive oxygen species. In parallel, 3-MST-/- mice showed no significant alterations in endothelial NO synthase or downstream targets. Finally, in a separate cohort of older 3-MST-/- mice (18 months old), a hypertensive phenotype associated with cardiac hypertrophy and NO insufficiency was observed. CONCLUSIONS: Overall, genetic ablation of 3-MST impacts on the mouse cardiovascular system in an age-dependent manner. Loss of 3-MST exerts a cardioprotective role in young adult mice, while with aging it predisposes them to hypertension and cardiac hypertrophy.


Subject(s)
Cardiovascular System/metabolism , Hydrogen Sulfide/metabolism , Myocytes, Cardiac/metabolism , Sulfurtransferases/metabolism , Animals , Antioxidants/metabolism , Cardiovascular System/enzymology , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Gene Expression Regulation, Enzymologic , Hydrogen Sulfide/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/enzymology , Nitric Oxide/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Sulfurtransferases/genetics , Vasodilation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...