Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 4(21): 6730-4, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23034799

ABSTRACT

A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.


Subject(s)
Carbon/chemistry , Coloring Agents/chemistry , Solar Energy , Ultraviolet Rays , Chlorobenzenes/chemistry , Electrodes , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Platinum/chemistry
2.
Nanotechnology ; 22(22): 225101, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21464526

ABSTRACT

A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.


Subject(s)
Cadmium Compounds/chemistry , Contrast Media/chemistry , Immunomagnetic Separation/methods , Magnetite Nanoparticles/chemistry , Neoplasms/diagnosis , Tellurium/chemistry , Cell Line, Tumor , Cell Survival , ErbB Receptors/metabolism , Humans , Luminescence , Magnetite Nanoparticles/ultrastructure , Microscopy, Confocal/methods , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction
3.
Phys Chem Chem Phys ; 12(13): 3246-53, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20237715

ABSTRACT

Hexamine is known to assist anisotropic growth of metal oxides and the same is also found to be true for magnetite nanosynthesis. In this work we elucidate the role of hexamine and other precursors in the formation of magnetite nanorods by the hydrothermal route and their stoichiometry. Various others hydrolyzing agents such as sodium hydroxide (NaOH), sodium hydroxide + hexamine, ammonia (NH(3)), ammonia + formaldehyde are also studied. The synthesized nanoparticles are characterized with the help of various techniques such as X-ray diffraction (XRD), FT-IR spectroscopy, UV-VIS-NIR spectroscopy, transmission electron microscopy (TEM), Mössbauer spectroscopy and SQUID magnetization measurements. It is found that only when ferric chloride, ferrous ammonium sulfate (FAS) and hexamine are used, well defined nanorods are formed. When sodium hydroxide and hexamine are used as a hydrolyzing system nearly spherical nanoparticles with small size (approximately 13 nm) are formed, as compared to the case of sodium hydroxide alone which leads to bigger cube like nanoparticles. Interestingly the decomposition products of hexamine do not lead to nanorod formation. Thus, slow decomposition of hexamine at elevated temperature and the consequent slow rise in pH is the key to the anisotropic growth of the iron oxide system.

4.
J Nanosci Nanotechnol ; 7(12): 4294-302, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18283806

ABSTRACT

We report on the synthesis of iron oxide nanoparticles below 100 degrees C by a simple chemical protocol. The uniqueness of the method lies in the use of Ferrous ammonium sulphate (in conjugation with FeCl3) which helps maintain the stability of Fe2+ state in the reaction sequence thereby controlling the phase formation. Hexamine was added as the stabilizer. The nanoparticles synthesized at three different temperatures viz, 5 degrees, 27 degrees, and 95 degrees C are characterized by several techniques. Generally, when a mixture of Fe3+ and Fe2+ is added to sodium hydroxide, alpha-Fe2O3 (the anti-ferromagnetic phase) is formed after the dehydration process of the hydroxide. In our case however, the phases formed at all the three temperatures were found to be ferro (ferri) magnetic, implying modification of the formation chemistry due to the specifics of our method. The nanoparticles synthesized at the lowest temperature exhibit magnetite phase, while increase in growth temperature to 95 degrees C leads to the maghemite phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...