Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 1836, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28500318

ABSTRACT

Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed as a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100-500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. A relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.

2.
Ultramicroscopy ; 153: 9-21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25697461

ABSTRACT

The Nye tensor offers a means to estimate the geometrically necessary dislocation density of a crystalline sample based on measurements of the orientation changes within individual crystal grains. In this paper, the Nye tensor theory is applied to precession electron diffraction automated crystallographic orientation mapping (PED-ACOM) data acquired using a transmission electron microscope (TEM). The resulting dislocation density values are mapped in order to visualize the dislocation structures present in a quantitative manner. These density maps are compared with other related methods of approximating local strain dependencies in dislocation-based microstructural transitions from orientation data. The effect of acquisition parameters on density measurements is examined. By decreasing the step size and spot size during data acquisition, an increasing fraction of the dislocation content becomes accessible. Finally, the method described herein is applied to the measurement of dislocation emission during in situ annealing of Cu in TEM in order to demonstrate the utility of the technique for characterizing microstructural dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...