Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Polym Mater ; 4(4): 2536-2543, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35558359

ABSTRACT

Conducting-polymer-based electrical percolation networks are promising materials for use in high-sensitivity chemiresistive devices. An ongoing challenge is to create percolation networks that have consistent properties, so that devices based on these materials do not have to be individually calibrated. Here, an in situ conductance technique is used during the electrochemical growth of polypyrrole (PPy) percolation networks. The drain current (i d) across the interdigitated electrodes (IDEs) is a measure of the conductance of the PPy network during electrochemical polymerization. The i d curve is used to determine the percolation region. To improve the reproducibility of PPy percolation networks, an in situ conductance monitoring method based on the value of i d is used. A set of optimal ammonia gas percolation sensors was created using this method with an average sensitivity of ΔR/R 0 × 100% ppm-1 = 11.3 ± 1.2% ppm-1 and an average limit of detection of 15.0 ± 3.6 ppb.

2.
Analyst ; 146(7): 2186-2193, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33587728

ABSTRACT

Ammonium nitrate mixed with fuel oil (ANFO) is commonly used in improvised explosive devices (IEDs). The development of ANFO vapour sensors that are small, inexpensive, and easy to use will enable widespread IED detection in the context of security and humanitarian demining. Because of concealment and the low vapour pressures of most explosive materials, achieving sufficiently high sensitivity and low limits of detection are some of the main challenges of explosives vapour detection. Here ANFO chemiresistive vapour sensors based on polypyrrole (PPy) percolation networks are presented and compared to gas chromatography-mass spectroscopy (GC/MS) results for ANFO. Improved sensitivities are achieved by using a polymer percolation network instead of a thin film for the gas sensors. Vapour concentrations are detected of 13-180 ppb of ammonia emitted by a variety of different ammonium nitrate-containing fertilisers and fertiliser-diesel mixtures.

3.
RSC Adv ; 11(37): 22789-22797, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-35480426

ABSTRACT

Detection of NO2 plays an important role in various safety applications. However, sensitive and reversible sensing of NO2 remains a challenge. Here we demonstrate the use of poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer percolation networks for chemiresistive sensing of NO2. By adjusting the electrochemical polymerisation and doping conditions of the polymer, we show control over the relative contributions of oxidised and over-oxidised PEDOT to the sensing behaviour. Reversible NO2 sensors using only PEDOT as the sensor material are demonstrated. By operating the sensor near the electrical percolation threshold, a higher sensitivity is achieved compared to more traditional thin film based chemiresistive sensors. A limit of detection of 907 ± 102 ppb was achieved.

4.
Langmuir ; 36(9): 2403-2418, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32097015

ABSTRACT

We report methods to synthesize sub-micron- and micron-sized patchy silica particles with fluorescently labeled hemispherical titania protrusions, as well as routes to efficiently characterize these particles and self-assemble these particles into non-close-packed structures. The synthesis methods expand upon earlier work in the literature, in which silica particles packed in a colloidal crystal were surface-patterned with a silane coupling agent. Here, hemispherical amorphous titania protrusions were successfully labeled with fluorescent dyes, allowing for imaging by confocal microscopy and super-resolution techniques. Confocal microscopy was exploited to experimentally determine the numbers of protrusions per particle over large numbers of particles for good statistical significance, and these distributions were compared to simulations predicting the number of patches as a function of core particle polydispersity and maximum separation between the particle surfaces. We self-assembled these patchy particles into open percolating gel networks by exploiting solvophobic attractions between the protrusions.

SELECTION OF CITATIONS
SEARCH DETAIL
...