Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: mdl-35388408

ABSTRACT

Reproducibility of results obtained using ribonucleic acid (RNA) data across labs remains a major hurdle in cancer research. Often, molecular predictors trained on one dataset cannot be applied to another due to differences in RNA library preparation and quantification, which inhibits the validation of predictors across labs. While current RNA correction algorithms reduce these differences, they require simultaneous access to patient-level data from all datasets, which necessitates the sharing of training data for predictors when sharing predictors. Here, we describe SpinAdapt, an unsupervised RNA correction algorithm that enables the transfer of molecular models without requiring access to patient-level data. It computes data corrections only via aggregate statistics of each dataset, thereby maintaining patient data privacy. Despite an inherent trade-off between privacy and performance, SpinAdapt outperforms current correction methods, like Seurat and ComBat, on publicly available cancer studies, including TCGA and ICGC. Furthermore, SpinAdapt can correct new samples, thereby enabling unbiased evaluation on validation cohorts. We expect this novel correction paradigm to enhance research reproducibility and to preserve patient privacy.


Subject(s)
Confidentiality , Privacy , Algorithms , Humans , RNA , Reproducibility of Results
2.
Oncotarget ; 10(24): 2384-2396, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-31040929

ABSTRACT

We developed and clinically validated a hybrid capture next generation sequencing assay to detect somatic alterations and microsatellite instability in solid tumors and hematologic malignancies. This targeted oncology assay utilizes tumor-normal matched samples for highly accurate somatic alteration calling and whole transcriptome RNA sequencing for unbiased identification of gene fusion events. The assay was validated with a combination of clinical specimens and cell lines, and recorded a sensitivity of 99.1% for single nucleotide variants, 98.1% for indels, 99.9% for gene rearrangements, 98.4% for copy number variations, and 99.9% for microsatellite instability detection. This assay presents a wide array of data for clinical management and clinical trial enrollment while conserving limited tissue.

3.
Oncotarget ; 9(40): 25826-25832, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29899824

ABSTRACT

We have developed a clinically validated NGS assay that includes tumor, germline and RNA sequencing. We apply this assay to clinical specimens and cell lines, and we demonstrate a clinical sensitivity of 98.4% and positive predictive value of 100% for the clinically actionable variants measured by the assay. We also demonstrate highly accurate copy number measurements and gene rearrangement identification.

SELECTION OF CITATIONS
SEARCH DETAIL
...