Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(4): 3309-3322, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36630169

ABSTRACT

The magnetic properties of the nickelalumite-type layered double hydroxides (LDH), MAl4(OH)12(SO4)·3H2O (MAl4-LDH) with M = Co2+ (S = 3/2), Ni2+ (S = 1), or Cu2+ (S = 1/2) were determined by a combined experimental and computational approach. They represent three new inorganic, low-dimensional magnetic systems with a defect-free, structurally ordered magnetic lattice. They exhibit no sign of magnetic ordering down to 2 K in contrast to conventional hydrotalcite LDH. Detailed insight into the complex interplay between the choice of magnetic ion (M2+) and magnetic properties was obtained by a combination of magnetic susceptibility, heat capacity, neutron scattering, solid-state NMR spectroscopy, and first-principles calculations. The NiAl4- and especially CoAl4-LDH have pronounced zero-field splitting (ZFS, easy-axis and easy-plane, respectively) and weak ferromagnetic nearest-neighbour interactions. Thus, they are rare examples of predominantly zero-dimensional spin systems in dense, inorganic matrices. In contrast, CuAl4-LDH (S = 1/2) consists of weakly ferromagnetic S = 1/2 spin chains. For all three MAl4-LDH, good agreement is found between the experimental magnetic parameters (J, D, g) and first-principles quantum chemical calculations, which also predict that the interchain couplings are extremely weak (< 0.1 cm-1). Thus, our approach will be valuable for evaluation and prediction of magnetic properties in other inorganic materials.

2.
Nat Commun ; 13(1): 2547, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35538071

ABSTRACT

When charged particles in periodic lattices are subjected to a constant electric field, they respond by oscillating. Here we demonstrate that the magnetic analogue of these Bloch oscillations are realised in a ferromagnetic easy axis chain. In this case, the "particles" undergoing oscillatory motion in the presence of a magnetic field are domain walls. Inelastic neutron scattering reveals three distinct components of the low energy spin-dynamics including a signature Bloch oscillation mode. Using parameter-free theoretical calculations, we are able to account for all features in the excitation spectrum, thus providing detailed insights into the complex dynamics in spin-anisotropic chains.

3.
Phys Rev Lett ; 126(10): 107203, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33784157

ABSTRACT

Neutron spectroscopy on the classical triangular-lattice frustrated antiferromagnet h-YMnO_{3} reveals diffuse, gapless magnetic excitations present both far below and above the ordering temperature. The correlation length of the excitations increases as the temperature approaches zero, bearing a strong resemblance to critical scattering. We model the dynamics in the ordered and correlated disordered phase as critical spin correlations in a two-dimensional magnetic state. We propose that our findings may provide a general framework to understand features often attributed to classical spin liquids.

4.
Phys Chem Chem Phys ; 23(13): 7653-7672, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33625410

ABSTRACT

Helium Atom Scattering (HAS) and Helium Spin-Echo scattering (HeSE), together helium scattering, are well established, but non-commercial surface science techniques. They are characterised by the beam inertness and very low beam energy (<0.1 eV) which allows essentially all materials and adsorbates, including fragile and/or insulating materials and light adsorbates such as hydrogen to be investigated on the atomic scale. At present there only exist an estimated less than 15 helium and helium spin-echo scattering instruments in total, spread across the world. This means that up till now the techniques have not been readily available for a broad scientific community. Efforts are ongoing to change this by establishing a central helium scattering facility, possibly in connection with a neutron or synchrotron facility. In this context it is important to clarify what information can be obtained from helium scattering that cannot be obtained with other surface science techniques. Here we present a non-exclusive overview of a range of material properties particularly suited to be measured with helium scattering: (i) high precision, direct measurements of bending rigidity and substrate coupling strength of a range of 2D materials and van der Waals heterostructures as a function of temperature, (ii) direct measurements of the electron-phonon coupling constant λ exclusively in the low energy range (<0.1 eV, tuneable) for 2D materials and van der Waals heterostructures (iii) direct measurements of the surface boson peak in glassy materials, (iv) aspects of polymer chain surface dynamics under nano-confinement (v) certain aspects of nanoscale surface topography, (vi) central properties of surface dynamics and surface diffusion of adsorbates (HeSE) and (vii) two specific science case examples - topological insulators and superconducting radio frequency materials, illustrating how combined HAS and HeSE are necessary to understand the properties of quantum materials. The paper finishes with (viii) examples of molecular surface scattering experiments and other atom surface scattering experiments which can be performed using HAS and HeSE instruments.

5.
Phys Chem Chem Phys ; 22(43): 25001-25010, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33112325

ABSTRACT

Potassium chromium jarosite, KCr3(OH)6(SO4)2 (Cr-jarosite), is considered a promising candidate to display spin liquid behavior due to the strong magnetic frustration imposed by the crystal structure. However, the ground state magnetic properties have been debated, since Cr-jarosite is notoriously non-stoichiometric. Our study reports the magnetic properties for deuterated KCr3(OD)6(SO4)2 on chemically well-defined samples, which have been characteried by a combination of powder X-ray diffraction, neutron diffraction, solid state NMR spectroscopy, and scanning electron microscopy with energy dispersive spectroscopy. Eight polycrystalline samples, which all contained only 1-3% Cr vacancies were obtained. However, significant substitution (2-27%) of potassium with H2O and/or H3O+ was observed and resulted in pronounced stacking disorder along the c-axis. A clear second-order transition to an antiferromagnetically ordered phase at TN = 3.8(1) K with a small net moment of 0.03 µB per Cr3+-ion was obtained from vibrating sample magnetometry and temperature dependent neutron diffraction. The moment is attributed to spin canting caused by the Dzyaloshinskii-Moriya interaction. Thus, our experimental results imply that even ideal potassium chromium jarosite will exhibit magnetic order below 4 K and therefore it does not qualify as a true spin liquid material.

6.
ACS Appl Mater Interfaces ; 12(7): 8780-8787, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31877013

ABSTRACT

Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field, and local proximitized magnetic exchange. In this work, we present lattice-matched hybrid epitaxy of semiconductor-ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure and their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the band gap of EuS, thus preserving the semiconducting properties. Both neutron and X-ray reflectivity measurements show that the overall ferromagnetic component is mainly localized in the EuS thin film with a suppression of the Eu moment in the EuS layer nearest the InAs and magnetic moments outside the detection limits on the pure InAs side. This work presents a step toward realizing defect-free semiconductor-ferromagnetic insulator epitaxial hybrids for spin-lifted quantum and spintronic applications without external magnetic fields.

7.
Nat Commun ; 9(1): 1292, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29599433

ABSTRACT

Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin-orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C4) to pseudo-linear (D4d) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.

8.
Rev Sci Instrum ; 89(1): 015105, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29390677

ABSTRACT

The continuous angle multiple energy analysis concept is a backend for both time-of-flight and analyzer-based neutron spectrometers optimized for neutron spectroscopy with highly efficient mapping in the horizontal scattering plane. The design employs a series of several upward scattering analyzer arcs placed behind each other, which are set to different final energies allowing a wide angular coverage with multiple energies recorded simultaneously. For validation of the concept and the model calculations, a prototype was installed at the Swiss neutron source SINQ, Paul Scherrer Institut. The design of the prototype, alignment and calibration procedures, experimental results of background measurements, and proof-of-concept inelastic measurements on LiHoF4 and h-YMnO3 are presented here.

9.
Rev Sci Instrum ; 87(6): 065101, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27370491

ABSTRACT

VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

10.
Rev Sci Instrum ; 85(11): 113908, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430125

ABSTRACT

Developments in modern neutron spectroscopy have led to typical sample sizes decreasing from few cm to several mm in diameter samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can readily be combined with advanced focussing geometries and with multiplexing instrument designs. We present a combination of simulations and data showing three different energies simultaneously reflected from one analyser. Experiments were performed on a cold triple axis instrument and on a prototype inverse geometry Time-of-flight spectrometer installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2.0 times finer resolution and a factor of 1.9 in flux gain compared to a focussing Rowland geometry, or of 3.3 times finer resolution and a factor of 2.4 in flux gain compared to a single flat analyser slab.

11.
J Struct Biol ; 188(1): 61-70, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25175398

ABSTRACT

Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180µm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7µm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water.


Subject(s)
Carbon Dioxide/metabolism , Oxygen/metabolism , Photosynthesis , Plant Leaves/ultrastructure , Carbon Dioxide/chemistry , Environment , Hydrophobic and Hydrophilic Interactions , Oxygen/chemistry , Plant Leaves/chemistry , Poaceae/chemistry , Poaceae/ultrastructure , Synchrotrons , Tomography , Water/chemistry , X-Rays
12.
J Chem Phys ; 140(4): 044709, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-25669569

ABSTRACT

Samples of nanoscale hematite, α-Fe2O3, with different surface geometries and properties have been studied with inelastic time-of-flight neutron scattering. The 15 nm diameter nanoparticles previously shown to have two collective magnetic excitation modes in separate triple-axis neutron scattering studies have been studied in further detail using the advantage of a large detector area, high resolution, and large energy transfer range of the IN5 TOF spectrometer. A mesoporous hematite sample has also been studied, showing similarities to that of the nanoparticle sample and bulk α-Fe2O3. Analysis of these modes provides temperature dependence of the magnetic anisotropy coefficient along the c-axis, κ1. This is shown to remain negative throughout the temperature range studied in both samples, providing an explanation for the previously observed suppression of the Morin transition in the mesoporous material. The values of this anisotropy coefficient are found to lie between those of bulk and nano-particulate samples, showing the hybrid nature of the mesoporous 3-dimensional structure.

13.
Rev Sci Instrum ; 84(5): 055106, 2013 May.
Article in English | MEDLINE | ID: mdl-23742588

ABSTRACT

We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

14.
Nat Mater ; 11(8): 694-9, 2012 Jun 24.
Article in English | MEDLINE | ID: mdl-22728320

ABSTRACT

The random fluctuations of spins give rise to many interesting physical phenomena, such as the 'order-from-disorder' arising in frustrated magnets and unconventional Cooper pairing in magnetic superconductors. Here we show that the exchange of spin waves between extended topological defects, such as domain walls, can result in novel magnetic states. We report the discovery of an unusual incommensurate phase in the orthoferrite TbFeO(3) using neutron diffraction under an applied magnetic field. The magnetic modulation has a very long period of 340 Å at 3 K and exhibits an anomalously large number of higher-order harmonics. These domain walls are formed by Ising-like Tb spins. They interact by exchanging magnons propagating through the Fe magnetic sublattice. The resulting force between the domain walls has a rather long range that determines the period of the incommensurate state and is analogous to the pion-mediated Yukawa interaction between protons and neutrons in nuclei.

15.
Nat Mater ; 7(10): 811-5, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18758454

ABSTRACT

Engineering of materials with specific physical properties has recently focused on the effect of nano-sized 'guest domains' in a 'host matrix' that enable tuning of electrical, mechanical, photo-optical or thermal properties. A low thermal conductivity is a prerequisite for obtaining effective thermoelectric materials, and the challenge is to limit the conduction of heat by phonons, without simultaneously reducing the charge transport. This is named the 'phonon glass-electron crystal' concept and may be realized in host-guest systems. The guest entities are believed to have independent oscillations, so-called rattler modes, which scatter the acoustic phonons and reduce the thermal conductivity. We have investigated the phonon dispersion relation in the phonon glass-electron crystal material Ba(8)Ga(16)Ge(30) using neutron triple-axis spectroscopy. The results disclose unambiguously the theoretically predicted avoided crossing of the rattler modes and the acoustic-phonon branches. The observed phonon lifetimes are longer than expected, and a new explanation for the low kappa(L) is provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...