Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 16(1): 160-70, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27398441

ABSTRACT

Nanomedicines have become an attractive platform for the development of novel drug delivery systems in cancer chemotherapy. Polymeric nanoparticles (NPs) represent one of the best well-investigated nanosized carriers for delivery of antineoplastic compounds. The "Pegylation strategy" of drug delivery systems has been used in order to improve carrier biodistribution, however, some nanosized systems with PEG on their surface have exhibited poorly-cellular drug internalization. In this context, the purpose of the present study was to compare in vitro performance of two paclitaxel (PTX)-loaded NPs systems based on two biocompatible copolymers of alpha tocopheryl polyethylene glycol 1000 succinate-block-poly(ε-caprolactone) (TPGS-b-PCL) and methoxyPEG- block-poly(ε-caprolactone) (mPEG-b-PCL) in terms of citotoxicity and PTX cellular uptake. Fur- thermore, TPGS-b-PCL NPs were also copared with the commercially available PTX nano-sized formulation Abraxane®. Both TPGS-b-PCL and mPEG-b-PCL derivates were synthesized by ring opening polymerization of ε-caprolactone employing microwaved radiation. NPs were obtained by a solvent evaporation technique where the PTX content was determined by reverse-phase HPLC. The resulting NPs had an average size between 200 and 300 nm with a narrow size distribution. Also both NPs systems showed a spherical shape. The in vitro PTX release profile from the NPs was characterized employing the dialysis membrane method where all drug-loaded formulations showed a sustained and slow release of PTX. Finally, in vitro assays demonstrated that PTX-loaded TPGS- b-PCL exhibited a significant higher antitumor activity than PTX-loaded mPEG-b-PCL NPs and Abraxane® against an estrogen-dependent (MCF-7) and an estrogen independent (MDA-MB-231) breast cancer cells lines. Furthermore TPGS-b-PCL NPs showed a significant increase on PTX cellular uptake, for both breast cell lines, in comparison with mPEG-b-PCL NPs and Abraxane®. Overall findings confirmed that NPs based on TPGS-b-PCL as biomaterial demonstrated a better in vitro performance than NPs with PEG, representing an attractive alternative for the development of novel nanosized carriers for anticancer therapy.


Subject(s)
Albumin-Bound Paclitaxel , Cytotoxins , Nanoparticles/chemistry , Neoplasms/drug therapy , Paclitaxel , Polyesters , Vitamin E/analogs & derivatives , Albumin-Bound Paclitaxel/chemistry , Albumin-Bound Paclitaxel/pharmacokinetics , Albumin-Bound Paclitaxel/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacokinetics , Cytotoxins/pharmacology , Female , Humans , MCF-7 Cells , Neoplasms/metabolism , Neoplasms/pathology , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology , Polyesters/chemistry , Polyesters/pharmacokinetics , Polyesters/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Vitamin E/chemistry , Vitamin E/pharmacokinetics , Vitamin E/pharmacology
2.
Colloids Surf B Biointerfaces ; 113: 43-50, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24060929

ABSTRACT

The purpose of this work was to develop Cremophor(®) EL-free nanoparticles (NPs) loaded with Paclitaxel (PTX) in order to improve the drug i.v. pharmacokinetic profile and to evaluate its activity against commercially available formulations such as Taxol(®) and Abraxane(®). PTX-loaded poly(ε-caprolactone)-alpha tocopheryl polyethylene glycol 1000 succinate (PCL-TPGS) NPs were prepared using three different techniques: (i) by nanoprecipitation (NPr-method), (ii) by emulsion-solvent evaporation homogenized with an Ultra-Turrax(®) (UT-method) and (iii) by emulsion-solvent evaporation homogenized with an ultrasonicator (US-method). The NPs prepared by US-method showed the smallest size and the highest drug content. The NPs exhibited a slow and continuous release of PTX. The in vitro anti-tumoral activity was assessed using two human breast cancer cell lines (MCF-7 and MDA-MB-231) with the WTS assay. Cytotoxicity studies with both cell lines showed that PTX-loaded PCL-TPGS NPs exhibited better anti-cancer activity compared to PTX solution and the commercial formulation Abraxane(®) at different concentrations. Importantly, in the case of triple negative MDA-MB-231 breast cancer cells, the IC50 value for PTX-loaded PCL-TPGS NPs was 7.8 times lower than Abraxane(®). Finally, in vivo studies demonstrated that PTX-loaded PCL-TPGS NPs exhibited longer systemic circulation time and slower plasma elimination rate than Taxol(®) and Abraxane(®). Therefore, the novel NPs investigated might be an alternative nanotechnological platform for PTX delivery system in cancer chemotherapy.


Subject(s)
Nanoparticles/chemistry , Paclitaxel/chemistry , Paclitaxel/pharmacology , Paclitaxel/pharmacokinetics , Polyesters/chemistry , Polymers/chemistry , Vitamin E/analogs & derivatives , Albumin-Bound Paclitaxel , Albumins/chemistry , Albumins/pharmacokinetics , Albumins/pharmacology , Animals , Calorimetry, Differential Scanning , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Male , Polyethylene Glycols/chemistry , Rats , Rats, Wistar , Vitamin E/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...