Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 666879, 2021.
Article in English | MEDLINE | ID: mdl-34335568

ABSTRACT

Muscular dystrophies and inflammatory myopathies are heterogeneous muscular disorders characterized by progressive muscle weakness and mass loss. Despite the high variability of etiology, inflammation and involvement of both innate and adaptive immune response are shared features. The best understood immune mechanisms involved in these pathologies include complement cascade activation, auto-antibodies directed against muscular proteins or de-novo expressed antigens in myofibers, MHC-I overexpression in myofibers, and lymphocytes-mediated cytotoxicity. Intravenous immunoglobulins (IVIGs) administration could represent a suitable immunomodulator with this respect. Here we focus on mechanisms of action of immunoglobulins in muscular dystrophies and inflammatory myopathies highlighting results of IVIGs from pre-clinical and case reports evidences.


Subject(s)
Autoimmunity , Immunoglobulins/immunology , Muscular Dystrophies/immunology , Myositis/immunology , Autoantibodies/immunology , Humans , Immunoglobulins/metabolism , Muscle Proteins/metabolism , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Myositis/metabolism , Myositis/pathology
2.
Sci Transl Med ; 13(607)2021 08 18.
Article in English | MEDLINE | ID: mdl-34408077

ABSTRACT

Friedreich ataxia (FRDA) is caused by the reduced expression of the mitochondrial protein frataxin (FXN) due to an intronic GAA trinucleotide repeat expansion in the FXN gene. Although FRDA has no cure and few treatment options, there is research dedicated to finding an agent that can curb disease progression and address symptoms as neurobehavioral deficits, muscle endurance, and heart contractile dysfunctions. Because oxidative stress and mitochondrial dysfunctions are implicated in FRDA, we demonstrated the systemic delivery of catalysts activity of gold cluster superstructures (Au8-pXs) to improve cell response to mitochondrial reactive oxygen species and thereby alleviate FRDA-related pathology in mesenchymal stem cells from patients with FRDA. We also found that systemic injection of Au8-pXs ameliorated motor function and cardiac contractility of YG8sR mouse model that recapitulates the FRDA phenotype. These effects were associated to long-term improvement of mitochondrial functions and antioxidant cell responses. We related these events to an increased expression of frataxin, which was sustained by reduced autophagy. Overall, these results encourage further optimization of Au8-pXs in experimental clinical strategies for the treatment of FRDA.


Subject(s)
Friedreich Ataxia , Animals , Disease Models, Animal , Gold , Humans , Mice , Reactive Oxygen Species , Trinucleotide Repeat Expansion
3.
Nat Commun ; 12(1): 2099, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833239

ABSTRACT

In Duchenne muscular dystrophy (DMD), sarcolemma fragility and myofiber necrosis produce cellular debris that attract inflammatory cells. Macrophages and T-lymphocytes infiltrate muscles in response to damage-associated molecular pattern signalling and the release of TNF-α, TGF-ß and interleukins prevent skeletal muscle improvement from the inflammation. This immunological scenario was extended by the discovery of a specific response to muscle antigens and a role for regulatory T cells (Tregs) in muscle regeneration. Normally, autoimmunity is avoided by autoreactive T-lymphocyte deletion within thymus, while in the periphery Tregs monitor effector T-cells escaping from central regulatory control. Here, we report impairment of thymus architecture of mdx mice together with decreased expression of ghrelin, autophagy dysfunction and AIRE down-regulation. Transplantation of dystrophic thymus in recipient nude mice determine the up-regulation of inflammatory/fibrotic markers, marked metabolic breakdown that leads to muscle atrophy and loss of force. These results indicate that involution of dystrophic thymus exacerbates muscular dystrophy by altering central immune tolerance.


Subject(s)
Immune Tolerance/immunology , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Dystrophy, Animal/pathology , Thymus Gland/pathology , Animals , Autophagy/physiology , Ghrelin/biosynthesis , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Nude , Muscular Dystrophy, Duchenne/pathology , T-Lymphocytes/transplantation , T-Lymphocytes, Regulatory/immunology , Thymus Gland/transplantation , Transcription Factors/biosynthesis , AIRE Protein
4.
EMBO Mol Med ; 12(1): e11019, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31793167

ABSTRACT

Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) and removal of intracellular Ca2+ . Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD.


Subject(s)
Muscle, Skeletal/growth & development , Muscular Dystrophy, Duchenne/drug therapy , Receptor, IGF Type 2/antagonists & inhibitors , Regeneration , Animals , Binding Sites , Child , Humans , Mice , Mice, Inbred mdx , Myoblasts , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...