Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nucleic Acids Res ; 39(7): 2503-18, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21109534

ABSTRACT

Immediate early gene (IEG) expression is coordinated by multiple MAP kinase signaling pathways in a signal specific manner. Stress-activated p38α MAP kinase is implicated in transcriptional regulation of IEGs via MSK-mediated CREB phosphorylation. The protein kinases downstream to p38, MAPKAP kinase (MK) 2 and MK3 have been identified to regulate gene expression at the posttranscriptional levels of mRNA stability and translation. Here, we analyzed stress-induced IEG expression in MK2/3-deficient cells. Ablation of MKs causes a decrease of p38α level and p38-dependent IEG expression. Unexpectedly, restoration of p38α does not rescue the full-range IEG response. Instead, the catalytic activity of MKs is necessary for the major transcriptional activation of IEGs. By transcriptomics, we identified MK2-regulated genes and recognized the serum response element (SRE) as a common promoter element. We show that stress-induced phosphorylation of serum response factor (SRF) at serine residue 103 is significantly reduced and that induction of SRE-dependent reporter activity is impaired and can only be rescued by catalytically active MK2 in MK2/3-deficient cells. Hence, a new function of MKs in transcriptional activation of IEGs via the p38α-MK2/3-SRF-axis is proposed which probably cooperates with MKs' role in posttranscriptional gene expression in inflammation and stress response.


Subject(s)
Genes, Immediate-Early , Intracellular Signaling Peptides and Proteins/physiology , MAP Kinase Signaling System , Protein Serine-Threonine Kinases/physiology , Transcriptional Activation , Animals , Anisomycin/pharmacology , Cell Nucleus/enzymology , Gene Expression Profiling , Gene Knockout Techniques , HeLa Cells , Humans , Immediate-Early Proteins/biosynthesis , Immediate-Early Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mitogen-Activated Protein Kinase 14/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Serum Response Factor/metabolism , Stress, Physiological/genetics , Ultraviolet Rays
2.
Clin Exp Allergy ; 38(10): 1590-605, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18665843

ABSTRACT

BACKGROUND: Existing treatments for asthma are not effective in all patients and disease exacerbations are common, highlighting the need for increased understanding of disease mechanisms and novel treatment strategies. The leukotriene pathway including the enzyme responsible for arachidonic acid release from cellular phospholipids, cPLA(2)alpha, is a major contributor to asthmatic responses and an attractive target in asthma therapies. OBJECTIVE: The study reported here investigates (a) the differential effects of in vitro exposure of peripheral blood mononuclear cells (PBMCs) to allergen between asthma and healthy subjects, and (b) the contribution of cPLA(2)alpha to these differences in gene expression. METHODS: In vitro responses of asthma (N=26) and healthy (N=11) subject PBMC samples to allergen stimulation in the presence and absence of cPLA(2)alpha inhibition or 5-lipoxygenase inhibition were compared at the gene expression level using oligonucleotide arrays and at the protein level using ELISA. RESULTS: Subject samples within both asthma and healthy groups showed allergen-dependent cytokine production and allergen-dependent gene expression changes, although transcriptional profiling identified 153 genes that were modulated significantly differently by allergen between asthma and healthy subjects. Among these were genes previously associated with asthma, but the majority (about 80%) have not previously been associated with asthma. CONCLUSIONS: Transcriptional profiling elucidated novel gene expression differences between the asthmatic and healthy subject samples. Although 5-lipoxygenase inhibition did not significantly affect allergen-modulated gene expression, the inhibition of cPLA(2)alpha activity affected many of the allergen-dependent, asthma-associated gene expression changes.


Subject(s)
Allergens/immunology , Asthma/immunology , Group IV Phospholipases A2/antagonists & inhibitors , Group IV Phospholipases A2/immunology , Leukocytes, Mononuclear/immunology , Adult , Allergens/metabolism , Arachidonic Acid/metabolism , Asthma/enzymology , Asthma/genetics , Benzoates/pharmacology , Cytokines/immunology , Cytokines/metabolism , Female , Gene Expression Profiling , Group IV Phospholipases A2/metabolism , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/enzymology , Male , Middle Aged , Sulfonamides/pharmacology
3.
Clin Exp Allergy ; 38(4): 594-601, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18307523

ABSTRACT

BACKGROUND: IL-13 plays a key regulatory role in asthmatic responses and immunity to parasitic infection. In vivo, IL-13R-alpha2 is a critical modulator of IL-13 bioactivity. When inducibly expressed on the surface of fibroblasts and other cell types under inflammatory conditions, IL-13R-alpha2 contributes to resolution of IL-13 responses. A soluble form of IL-13R-alpha2 (sIL-13R-alpha2) can be detected in murine circulation, and functions as a regulator of IL-13 bioactivity. In humans, sIL-13R-alpha2 has been more difficult to detect. Recently, novel assay systems have been described to quantitate sIL-13R-alpha2 in human circulation, and revealed unexpectedly high levels of sIL-13R-alpha2 in healthy subjects. OBJECTIVE: To verify sIL-13R-alpha2 quantitation in human plasma samples under stringent conditions of signal verification and false-positive detection. METHODS: A standard ELISA protocol was evaluated for specificity using false-positive detection reagents. A more stringent ELISA protocol was developed by optimizing the composition of blocking and dilution buffers. RESULTS: Using the stringent assay protocol, endogenous sIL-13R-alpha2 was undetectable in plasma samples from a total of 120 asthmatics and 20 healthy subjects, and in bronchoalveolar lavage fluid from 10 asthmatics and eight healthy subjects undergoing allergen challenge. CONCLUSION: These results underscore the necessity to perform rigorous assay controls in the biological matrix to be tested. Because the soluble form could not be demonstrated, our findings question a role for sIL-13R-alpha2 in the regulation of IL-13 bioactivity, and highlight the potentially important contribution of the membrane-bound form of IL-13R-alpha2 in humans.


Subject(s)
Asthma/blood , Interleukin-13 Receptor alpha2 Subunit/blood , Bronchoalveolar Lavage Fluid/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , False Positive Reactions , Humans , Interleukin-13 Receptor alpha2 Subunit/biosynthesis , Predictive Value of Tests , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...