Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38069100

ABSTRACT

The castration of stallions is traditionally performed after puberty, at around the age of 2 years old. No studies have focused on the effects of early castration on osteoarticular metabolism. Thus, we aimed to compare early castration (3 days after birth) with traditional castration (18 months of age) in horses. Testosterone and estradiol levels were monitored from birth to 33 months in both groups. We quantified the levels of biomarkers of cartilage and bone anabolism (CPII and N-MID) and catabolism (CTX-I and CTX-II), as well as of osteoarthritis (HA and COMP) and inflammation (IL-6 and PGE2). We observed a lack of parallelism between testosterone and estradiol synthesis after birth and during puberty in both groups. The extra-gonadal synthesis of steroids was observed around the 28-month mark, regardless of the castration age. We found the expression of estrogen receptor (ESR1) in cartilage and bone, whereas androgen receptor (AR) expression appeared to be restricted to bone. Nevertheless, with respect to osteoarticular metabolism, steroid hormone deprivation resulting from early castration had no discernable impact on the levels of biomarkers related to bone and cartilage metabolism, nor on those associated with OA and inflammation. Consequently, our research demonstrated that early castration does not disrupt bone and cartilage homeostasis.


Subject(s)
Osteoarthritis , Sexual Maturation , Animals , Male , Horses , Orchiectomy , Castration , Testosterone/pharmacology , Estradiol/pharmacology , Inflammation , Biomarkers
2.
Front Oncol ; 13: 1220459, 2023.
Article in English | MEDLINE | ID: mdl-37719019

ABSTRACT

Chondrosarcomas and osteosarcomas are malignant bone tumors with a poor prognosis when unresectable or metastasized. Moreover, radiotherapy and chemotherapy could be ineffective. MiRNAs represent an alternative therapeutic approach. Based on high-throughput functional screening, we identified four miRNAs with a potential antiproliferative effect on SW1353 chondrosarcoma cells. Individual functional validations were then performed in SW1353 cells, as well as in three osteosarcoma cell lines. The antiproliferative and cytotoxic effects of miRNAs were evaluated in comparison with a positive control, miR-342-5p. The cytotoxic effect of four selected miRNAs was not confirmed on SW1353 cells, but we unambiguously revealed that miR-4270 had a potent cytotoxic effect on HOS and MG-63 osteosarcoma cell lines, but not on SaOS-2 cell line. Furthermore, like miR-342-5p, miR-4270 induced apoptosis in these two cell lines. In addition, we provided the first report of Bcl-xL as a direct target of miR-4270. MiR-4270 also decreased the expression of the anti-apoptotic protein Mcl-1, and increased the expression of the pro-apoptotic protein Bak. Our findings demonstrated that miR-4270 has tumor suppressive activity in osteosarcoma cells, particularly through Bcl-xL downregulation.

3.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012214

ABSTRACT

Osteoarthritis (OA) is a degenerative and heterogeneous disease that affects all types of joint structures. Current clinical treatments are only symptomatic and do not manage the degenerative process in animals or humans. One of the new orthobiological treatment strategies being developed to treat OA is the use of drug delivery systems (DDS) to release bioactive molecules over a long period of time directly into the joint to limit inflammation, control pain, and reduce cartilage degradation. Two vasoactive peptides, endothelin-1 and bradykinin, play important roles in OA pathogenesis. In this study, we investigated the effects of two functionalized nanogels as DDS. We assessed the effect of chitosan functionalized with a type A endothelin receptor antagonist (BQ-123-CHI) and/or hyaluronic acid functionalized with a type B1 bradykinin receptor antagonist (R-954-HA). The biocompatibility of these nanogels, alone or in combination, was first validated on equine articular chondrocytes cultured under different oxic conditions. Further, in an OA equine organoid model via induction with interleukin-1 beta (IL-1ß), a combination of BQ-123-CHI and R-954-HA (BR5) triggered the greatest decrease in inflammatory and catabolic markers. In basal and OA conditions, BQ-123-CHI alone or in equimolar combinations with R-954-HA had weak pro-anabolic effects on collagens synthesis. These new nanogels, as part of a composite DDS, show promising attributes for treating OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Bradykinin Receptor Antagonists/metabolism , Bradykinin Receptor Antagonists/pharmacology , Bradykinin Receptor Antagonists/therapeutic use , Cartilage/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/metabolism , Endothelin-1/metabolism , Horses , Humans , Interleukin-1beta/metabolism , Nanogels , Organoids/metabolism , Osteoarthritis/metabolism
4.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35337159

ABSTRACT

Osteosarcomas are the most common type of malignant bone tumor. These tumors are characterized by the synthesis of an osteoid matrix. Current treatments are based on surgery and combination chemotherapy. However, for metastatic or recurrent tumors, chemotherapy is generally ineffective, and osteosarcomas are sometimes unresectable. Thus, the use of microRNAs (miRNAs) may represent an attractive alternative for the development of new therapies. Using high-throughput functional screening based on impedancemetry, we previously selected five miRNAs with potential chemosensitizing or antiproliferative effects on chondrosarcoma cells. We validated the tumor-suppressive activity of miR-491-5p and miR-342-5p in three chondrosarcoma cell lines. Here, we carried out individual functional validation of these five miRNAs in three osteosarcoma cell lines used as controls to evaluate their specificity of action on another type of bone sarcoma. The cytotoxic effects of miR-491-5p and miR-342-5p were also confirmed in osteosarcoma cells. Both miRNAs induced apoptosis. They increased Bcl-2 homologous antagonist killer (Bak) protein expression and directly targeted Bcl-2 lymphoma-extra large (Bcl-xL). MiR-342-5p also decreased B-cell lymphoma-2 (Bcl-2) protein expression, and miR-491-5p decreased that of Epidermal Growth Factor Receptor (EGFR). MiR-342-5p and miR-491-5p show tumor-suppressive activity in osteosarcomas. This study also confirms the potential of Bcl-xL as a therapeutic target in osteosarcomas.

5.
Domest Anim Endocrinol ; 79: 106691, 2022 04.
Article in English | MEDLINE | ID: mdl-34844012

ABSTRACT

Although vitamin D acts in various biological processes, it plays a critical role in the maintenance of bone health, and regulates calcium homeostasis. In humans and rodents, the main tissues involved in vitamin D metabolism are the liver and the kidneys, however it has been shown that the testis has strongly participated in its bioactivation. Indeed, in these different species, enzymes metabolizing vitamin D (CYP27A1, CYP27B1 and CYP2R1) have been demonstrated in this tissue. Moreover, men with hypogonadism have shown a decrease in circulating levels of vitamin D. In equine species, the castration of males is a regular practice to reduce the behavior of stallions deemed too aggressive. Castration is carried out at various ages: in foals during their growth or in adulthood once they have reached their optimum size. Although horses exhibit atypical vitamin D metabolism with low circulating levels of vitamin D, it was suggested that testis may contribute to its activation as has been described in rodents and humans; castration could therefore be likely to affect its metabolism. In this study, blood levels of bioactive form of vitamin D (1 α,25[OH] 2 vitamin D 3 ) were measured before and after castration at different ages: 1 wk, after puberty (2 yr) and at adulthood (6 yr). The gene expression of enzymes involved in vitamin D metabolism has been sought in the testis of different experimental groups. No change in bioactive vitamin D3 levels was observed after castration regardless of the age at the time of surgery. The exceptional status of equine species is confirmed with a low or a lack of testis contribution to vitamin D metabolism, regardless of testicular development. This is demonstrated by a low or a lack of signal from enzymes involved in vitamin D bioactivation. Therefore, horses constitute a unique model in comparative endocrinology.


Subject(s)
Testis , Vitamin D , Animals , Cholecalciferol/metabolism , Cytochrome P-450 Enzyme System/genetics , Horses/genetics , Humans , Male , RNA, Messenger/metabolism
6.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070455

ABSTRACT

Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/genetics , Bone Neoplasms/metabolism , Chondrosarcoma/metabolism , MicroRNAs/pharmacology , Organoids/metabolism , Tumor Microenvironment/genetics , Autophagy/genetics , Bone Neoplasms/genetics , Cell Cycle/genetics , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Chondrocytes/metabolism , Chondrosarcoma/genetics , Cisplatin/pharmacology , ErbB Receptors/metabolism , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Organoids/cytology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein/metabolism
7.
Int J Mol Sci ; 22(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801461

ABSTRACT

Osteoarthritis (OA) is a significant cause of pain in both humans and horses with a high socio-economic impact. The horse is recognized as a pertinent model for human OA. In both species, regenerative therapy with allogeneic mesenchymal stem cells (MSCs) appears to be a promising treatment but, to date, no in vivo studies have attempted to compare the effects of different cell sources on the same individuals. The objective of this study is to evaluate the ability of a single blinded intra-articular injection of allogeneic bone-marrow (BM) derived MSCs and umbilical cord blood (UCB) derived MSC to limit the development of OA-associated pathological changes compared to placebo in a post-traumatic OA model applied to all four fetlock joints of eight horses. The effect of the tissue source (BM vs. UCB) is also assessed on the same individuals. Observations were carried out using clinical, radiographic, ultrasonographic, and magnetic resonance imaging methods as well as biochemical analysis of synovial fluid and postmortem microscopic and macroscopic evaluations of the joints until Week 12. A significant reduction in the progression of OA-associated changes measured with imaging techniques, especially radiography, was observed after injection of bone-marrow derived mesenchymal stem cells (BM-MSCs) compared to contralateral placebo injections. These results indicate that allogeneic BM-MSCs are a promising treatment for OA in horses and reinforce the importance of continuing research to validate these results and find innovative strategies that will optimize the therapeutic potential of these cells. However, they should be considered with caution given the low number of units per group.


Subject(s)
Arthritis, Experimental/prevention & control , Bone Marrow/growth & development , Fetal Blood/cytology , Mesenchymal Stem Cells/cytology , Osteoarthritis/prevention & control , Synovial Fluid/cytology , Animals , Arthritis, Experimental/etiology , Arthritis, Experimental/pathology , Female , Horses , Injections, Intra-Articular , Male , Mesenchymal Stem Cell Transplantation , Osteoarthritis/etiology , Osteoarthritis/pathology
8.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430111

ABSTRACT

Articular cartilage experiences mechanical constraints leading to chondral defects that inevitably evolve into osteoarthritis (OA), because cartilage has poor intrinsic repair capacity. Although OA is an incurable degenerative disease, several dietary supplements may help improve OA outcomes. In this study, we investigated the effects of Dielen® hydrolyzed fish collagens from skin (Promerim®30 and Promerim®60) and cartilage (Promerim®40) to analyze the phenotype and metabolism of equine articular chondrocytes (eACs) cultured as organoids. Here, our findings demonstrated the absence of cytotoxicity and the beneficial effect of Promerim® hydrolysates on eAC metabolic activity under physioxia; further, Promerim®30 also delayed eAC senescence. To assess the effect of Promerim® in a cartilage-like tissue, eACs were cultured as organoids under hypoxia with or without BMP-2 and/or IL-1ß. In some instances, alone or in the presence of IL-1ß, Promerim®30 and Promerim®40 increased protein synthesis of collagen types I and II, while decreasing transcript levels of proteases involved in OA pathogenesis, namely Htra1, and the metalloproteinases Mmp1-3, Adamts5, and Cox2. Both Promerim® hydrolysates also decreased Htra1 protein amounts, particularly in inflammatory conditions. The effect of Promerim® was enhanced under inflammatory conditions, possibly due to a decrease in the synthesis of inflammation-associated molecules. Finally, Promerim® favored in vitro repair in a scratch wound assay through an increase in cell proliferation or migration. Altogether, these data show that Promerim®30 and 40 hold promise as dietary supplements to relieve OA symptoms in patients and to delay OA progression.


Subject(s)
Cartilage, Articular/drug effects , Collagen/biosynthesis , Organoids/drug effects , Osteoarthritis/drug therapy , Animals , Cartilage, Articular/growth & development , Cell Differentiation/drug effects , Cells, Cultured , Chondrocytes/drug effects , Horses , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/pathology , Organoids/growth & development , Skin/chemistry
9.
PLoS One ; 15(6): e0235251, 2020.
Article in English | MEDLINE | ID: mdl-32584901

ABSTRACT

Osteoarthritis is a common cause of pain and economic loss in both humans and horses. The horse is recognized as a suitable model for human osteoarthritis, because the thickness, structure, and mechanical properties of equine articular cartilage are highly comparable to those of humans. Although a number of equine experimental osteoarthritis models have been described in the literature, these cases generally involve the induction of osteoarthritis in just one joint of each animal. This approach necessitates the involvement of large numbers of horses to obtain reliable data and thus limits the use of this animal model, for both economic and ethical reasons. This study adapts an established equine model of post-traumatic osteoarthritis to induce osteoarthritis-associated lesions in all 4 fetlock joints of the same horse in order to reduce the number of animals involved and avoid individual variability, thus obtaining a more reliable method to evaluate treatment efficacy in future studies. The objectives are to assess the feasibility of the procedure, evaluate variability of the lesions according to interindividual and operated-limb position and describe the spontaneous evolution of osteoarthritis-associated pathological changes over a twelve-week period. The procedure was well tolerated by all 8 experimental horses and successfully induced mild osteoarthritis-associated changes in the four fetlock joints of each horse. Observations were carried out using clinical, radiographic, ultrasonographic, and magnetic resonance imaging methods as well as biochemical analyses of synovial fluid and postmortem microscopic and macroscopic evaluations of the joints. No significant differences were found in the progression of osteoarthritis-associated changes between horses or between the different limbs, with the exception of higher synovial effusion in hind fetlocks compared to front fetlocks and higher radiographic scores for left fetlocks compared to the right. This model thus appears to be a reliable means to evaluate the efficacy of new treatments in horses, and may be of interest for translational studies in human medicine.


Subject(s)
Metatarsophalangeal Joint/pathology , Osteoarthritis/pathology , Animals , Disease Models, Animal , Horses , Magnetic Resonance Imaging , Metatarsal Bones/pathology , Metatarsophalangeal Joint/diagnostic imaging , Metatarsophalangeal Joint/surgery , Osteoarthritis/diagnostic imaging , Osteoarthritis/metabolism , Severity of Illness Index , Synovial Fluid/chemistry
10.
Mar Biotechnol (NY) ; 20(4): 436-450, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29627869

ABSTRACT

The shells of the bivalve mollusks are organo-mineral structures predominantly composed of calcium carbonate, but also of a minor organic matrix, a mixture of proteins, glycoproteins, and polysaccharides. These proteins are involved in mineral deposition and, more generally, in the spatial organization of the shell crystallites in well-defined microstructures. In this work, we extracted different organic shell extracts (acid-soluble matrix, acid-insoluble matrix, water-soluble matrix, guanidine HCl/EDTA-extracted matrix, referred as ASM, AIM, WSM, and EDTAM, respectively) from the shell of the scallop Pecten maximus and studied their biological activities on human articular chondrocytes (HACs). We found that these extracts differentially modulate the biological activities of HACs, depending on the type of extraction and the concentration used. Furthermore, we showed that, unlike ASM and AIM, WSM promotes maintenance of the chondrocyte phenotype in monolayer culture. WSM increased the expression of chondrocyte-specific markers (aggrecan and type II collagen), without enhancing that of the main chondrocyte dedifferentiation marker (type I collagen). We also demonstrated that WSM could favor redifferentiation of chondrocyte in collagen sponge scaffold in hypoxia. Thus, this study suggests that the organic matrix of Pecten maximus, particularly WSM, may contain interesting molecules with chondrogenic effects. Our research emphasizes the potential use of WSM of Pecten maximus for cell therapy of cartilage.


Subject(s)
Animal Shells/chemistry , Chondrocytes/drug effects , Extracellular Matrix , Pecten/chemistry , Aged , Aged, 80 and over , Aggrecans/genetics , Aggrecans/metabolism , Animals , Cell Differentiation/drug effects , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Gene Expression Profiling , Humans , Middle Aged , Phenotype
11.
Int J Mol Sci ; 19(2)2018 Feb 10.
Article in English | MEDLINE | ID: mdl-29439436

ABSTRACT

Cartilage engineering is a new strategy for the treatment of cartilage damage due to osteoarthritis or trauma in humans. Racehorses are exposed to the same type of cartilage damage and the anatomical, cellular, and biochemical properties of their cartilage are comparable to those of human cartilage, making the horse an excellent model for the development of cartilage engineering. Human mesenchymal stem cells (MSCs) differentiated into chondrocytes with chondrogenic factors in a biomaterial appears to be a promising therapeutic approach for direct implantation and cartilage repair. Here, we characterized equine umbilical cord blood-derived MSCs (eUCB-MSCs) and evaluated their potential for chondrocyte differentiation for use in cartilage repair therapy. Our results show that isolated eUCB-MSCs had high proliferative capacity and differentiated easily into osteoblasts and chondrocytes, but not into adipocytes. A three-dimensional (3D) culture approach with the chondrogenic factors BMP-2 and TGF-ß1 potentiated chondrogenic differentiation with a significant increase in cartilage-specific markers at the mRNA level (Col2a1, Acan, Snorc) and the protein level (type II and IIB collagen) without an increase in hypertrophic chondrocyte markers (Col10a1 and Mmp13) in normoxia and in hypoxia. However, these chondrogenic factors caused an increase in type I collagen, which can be reduced using small interfering RNA targeting Col1a2. This study provides robust data on MSCs characterization and demonstrates that eUCB-MSCs have a great potential for cartilage tissue engineering.


Subject(s)
Cell Differentiation , Chondrocytes/cytology , Chondrogenesis , Mesenchymal Stem Cells/cytology , Animals , Bone Morphogenetic Protein 2/pharmacology , Cartilage/physiology , Cells, Cultured , Chondrocytes/metabolism , Collagen/genetics , Collagen/metabolism , Fetal Blood/cytology , Horses , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Regeneration , Transforming Growth Factor beta1/pharmacology
12.
Int J Mol Sci ; 18(9)2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28885597

ABSTRACT

Umbilical cord blood (UCB) is an attractive alternative to bone marrow for isolation of mesenchymal stem cells (MSCs) to treat articular cartilage defects. Here, we set out to determine the growth factors (bone morphogenetic protein 2 (BMP-2) and transforming growth factor-ß (TGF-ß1)) and oxygen tension effects during chondrogenesis of human UCB-MSCs for cartilage engineering. Chondrogenic differentiation was induced using 3D cultures in type I/III collagen sponges with chondrogenic factors in normoxia (21% O2) or hypoxia (<5% O2) for 7, 14 and 21 days. Our results show that UCB-MSCs can be committed to chondrogenesis in the presence of BMP-2+TGF-ß1. Normoxia induced the highest levels of chondrocyte-specific markers. However, hypoxia exerted more benefit by decreasing collagen X and matrix metalloproteinase-13 (MMP13) expression, two chondrocyte hypertrophy markers. However, a better chondrogenesis was obtained by switching oxygen conditions, with seven days in normoxia followed by 14 days in hypoxia, since these conditions avoid hypertrophy of hUCB-MSC-derived chondrocytes while maintaining the expression of chondrocyte-specific markers observed in normoxia. Our study demonstrates that oxygen tension is a key factor for chondrogenesis and suggests that UBC-MSCs 3D-culture should begin in normoxia to obtain a more efficient chondrocyte differentiation before placing them in hypoxia for chondrocyte phenotype stabilization. UCB-MSCs are therefore a reliable source for cartilage engineering.


Subject(s)
Cell Differentiation , Chondrogenesis , Collagen Type III/metabolism , Collagen Type I/metabolism , Fetal Blood/cytology , Hypoxia/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Biomarkers , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/pharmacology , Cartilage, Articular/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Chondrocytes/metabolism , Chondrogenesis/drug effects , Chondrogenesis/genetics , Extracellular Matrix , Gene Expression , Humans , Hypoxia/genetics , Oxygen/metabolism , Phenotype , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology
13.
Int J Mol Sci ; 18(9)2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28837082

ABSTRACT

As in humans, osteoarthritis (OA) causes considerable economic loss to the equine industry. New hopes for cartilage repair have emerged with the matrix-associated autologous chondrocyte implantation (MACI). Nevertheless, its limitation is due to the dedifferentiation occurring during the chondrocyte amplification phase, leading to the loss of its capacity to produce a hyaline extracellular matrix (ECM). To enhance the MACI therapy efficiency, we have developed a strategy for chondrocyte redifferentiation, and demonstrated its feasibility in the equine model. Thus, to mimic the cartilage microenvironment, the equine dedifferentiated chondrocytes were cultured in type I/III collagen sponges for 7 days under hypoxia in the presence of BMP-2. In addition, chondrocytes were transfected by siRNA targeting Col1a1 and Htra1 mRNAs, which are overexpressed during dedifferentiation and OA. To investigate the quality of the neo-synthesized ECM, specific and atypical cartilage markers were evaluated by RT-qPCR and Western blot. Our results show that the combination of 3D hypoxia cell culture, BMP-2 (Bone morphogenetic protein-2), and RNA interference, increases the chondrocytes functional indexes (Col2a1/Col1a1, Acan/Col1a1), leading to an effective chondrocyte redifferentiation. These data represent a proof of concept for this process of application, in vitro, in the equine model, and will lead to the improvement of the MACI efficiency for cartilage tissue engineering therapy in preclinical/clinical trials, both in equine and human medicine.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Cell Differentiation , Chondrocytes/cytology , Chondrocytes/metabolism , RNA Interference , Animals , Biomarkers , Bone Morphogenetic Protein 2/pharmacology , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Hypoxia/genetics , Chondrocytes/drug effects , Collagen Type I/metabolism , Collagen Type III/metabolism , Extracellular Matrix/metabolism , Horses , Phenotype , RNA, Small Interfering/genetics , Tissue Engineering
14.
Sci Rep ; 7(1): 3406, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28611369

ABSTRACT

Mesenchymal stem cells (MSCs) hold promise for cartilage engineering. Here, we aimed to determine the best culture conditions to induce chondrogenesis of MSCs isolated from bone marrow (BM) of aged osteoarthritis (OA) patients. We showed that these BM-MSCs proliferate slowly, are not uniformly positive for stem cell markers, and maintain their multilineage potential throughout multiple passages. The chondrogenic lineage of BM-MSCs was induced in collagen scaffolds, under normoxia or hypoxia, by BMP-2 and/or TGF-ß1. The best chondrogenic induction, with the least hypertrophic induction, was obtained with the combination of BMP-2 and TGF-ß1 under hypoxia. Differentiated BM-MSCs were then transfected with siRNAs targeting two markers overexpressed in OA chondrocytes, type I collagen and/or HtrA1 protease. siRNAs significantly decreased mRNA and protein levels of type I collagen and HtrA1, resulting in a more typical chondrocyte phenotype, but with frequent calcification of the subcutaneously implanted constructs in a nude mouse model. Our 3D culture model with BMP-2/TGF-ß1 and COL1A1/HtrA1 siRNAs was not effective in producing a cartilage-like matrix in vivo. Further optimization is needed to stabilize the chondrocyte phenotype of differentiated BM-MSCs. Nevertheless, this study offers the opportunity to develop a combinatory cellular therapy strategy for cartilage tissue engineering.


Subject(s)
Cell- and Tissue-Based Therapy , Chondrogenesis , Hypoxia , Mesenchymal Stem Cells/cytology , Osteoarthritis/therapy , RNA, Small Interfering/genetics , Tissue Engineering , Aged , Aged, 80 and over , Animals , Bone Marrow/growth & development , Bone Marrow/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/physiology , Collagen Type I/antagonists & inhibitors , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Female , High-Temperature Requirement A Serine Peptidase 1/antagonists & inhibitors , High-Temperature Requirement A Serine Peptidase 1/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Humans , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Mice , Mice, Nude , Middle Aged , Osteoarthritis/metabolism , Osteoarthritis/pathology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
15.
Stem Cell Rev Rep ; 13(5): 611-630, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28597211

ABSTRACT

Articular cartilage presents a poor capacity for self-repair. Its structure-function are frequently disrupted or damaged upon physical trauma or osteoarthritis in humans. Similar musculoskeletal disorders also affect horses and are the leading cause of poor performance or early retirement of sport- and racehorses. To develop a therapeutic solution for horses, we tested the autologous chondrocyte implantation technique developed on human bone marrow (BM) mesenchymal stem cells (MSCs) on horse BM-MSCs. This technique involves BM-MSC chondrogenesis using a combinatory approach based on the association of 3D-culture in collagen sponges, under hypoxia in the presence of chondrogenic factors (BMP-2 + TGF-ß1) and siRNA to knockdown collagen I and HtrA1. Horse BM-MSCs were characterized before being cultured in chondrogenic conditions to find the best combination to enhance, stabilize, the chondrocyte phenotype. Our results show a very high proliferation of MSCs and these cells satisfy the criteria defining stem cells (pluripotency-surface markers expression). The combination of BMP-2 + TGF-ß1 strongly induces the chondrogenic differentiation of MSCs and prevents HtrA1 expression. siRNAs targeting Col1a1 and Htra1 were functionally validated. Ultimately, the combined use of specific culture conditions defined here with specific growth factors and a Col1a1 siRNAs (50 nM) association leads to the in vitro synthesis of a hyaline-type neocartilage whose chondrocytes present an optimal phenotypic index similar to that of healthy, differentiated chondrocytes. Our results lead the way to setting up pre-clinical trials in horses to better understand the reaction of neocartilage substitute and to carry out a proof-of-concept of this therapeutic strategy on a large animal model.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Chondrocytes/drug effects , Chondrogenesis/drug effects , Hyaline Cartilage/cytology , Mesenchymal Stem Cells/drug effects , Transforming Growth Factor beta1/pharmacology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cell Hypoxia , Cell Proliferation/drug effects , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrogenesis/genetics , Collagen Type I/antagonists & inhibitors , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Gene Expression Regulation , High-Temperature Requirement A Serine Peptidase 1/antagonists & inhibitors , High-Temperature Requirement A Serine Peptidase 1/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Horses , Hyaline Cartilage/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Tissue Engineering/methods
16.
Cytotechnology ; 69(5): 815-829, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28474214

ABSTRACT

Mollusc shells are composed of more than 95% calcium carbonate and less than 5% organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. In this study, we investigated the effects of matrix macromolecular components extracted from the shells of two edible molluscs of economic interest, i.e., the blue mussel Mytilus edulis and the Pacific oyster Crassostrea gigas. The potential biological activities of these organic molecules were analysed on human dermal fibroblasts in primary culture. Our results demonstrate that shell extracts of the two studied molluscs modulate the metabolic activities of the cells. In addition, the extracts caused a decrease of type I collagen and a concomitant increase of active MMP-1, both at the mRNA and the protein levels. Therefore, our results suggest that shell extracts from M. edulis and C. gigas contain molecules that promote the catabolic pathway of human dermal fibroblasts. This work emphasises the potential use of these shell matrices in the context of anti-fibrotic strategies, particularly against scleroderma. More generally, it stresses the usefulness to valorise bivalve shells that are coproducts of shellfish farming activity.

17.
Sci Rep ; 6: 32786, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27604951

ABSTRACT

Umbilical cord blood (UCB) is a promising alternative source of mesenchymal stem cells (MSCs), because UCB-MSCs are abundant and harvesting them is a painless non-invasive procedure. Potential clinical applications of UCB-MSCs have been identified, but their ability for chondrogenic differentiation has not yet been fully evaluated. The aim of our work was to characterize and determine the chondrogenic differentiation potential of human UCB-MSCs (hUCB-MSCs) for cartilage tissue engineering using an approach combining 3D culture in type I/III collagen sponges and chondrogenic factors. Our results showed that UCB-MSCs have a high proliferative capacity. These cells differentiated easily into an osteoblast lineage but not into an adipocyte lineage. Furthermore, BMP-2 and TGF-ß1 potentiated chondrogenic differentiation, as revealed by a strong increase in mature chondrocyte-specific mRNA (COL2A1, COL2B, ACAN) and protein (type II collagen) markers. Although growth factors increased the transcription of hypertrophic chondrocyte markers such as COL10A1 and MMP13, the cells present in the neo-tissue maintained their phenotype and did not progress to terminal differentiation and mineralization of the extracellular matrix after subcutaneous implantation in nude mice. Our study demonstrates that our culture model has efficient chondrogenic differentiation, and that hUCB-MSCs can be a reliable source for cartilage tissue engineering.


Subject(s)
Cartilage/cytology , Chondrogenesis/physiology , Fetal Blood/cytology , Mesenchymal Stem Cells/cytology , Tissue Engineering/methods , Bone Morphogenetic Protein 2/pharmacology , Cartilage/physiology , Cell Differentiation , Chondrocytes/cytology , Chondrocytes/physiology , Collagen/metabolism , Gene Expression Regulation , Humans , Immunophenotyping , Karyotype , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Microscopy, Electron, Scanning , Osteoblasts/cytology , Osteoblasts/physiology , Tissue Culture Techniques/methods , Transforming Growth Factor beta1/pharmacology
19.
BMC Cancer ; 15: 579, 2015 Aug 08.
Article in English | MEDLINE | ID: mdl-26253487

ABSTRACT

BACKGROUND: The benefit of better ballistic and higher efficiency of carbon ions for cancer treatment (hadron-therapy) is asserted since decades, especially for unresectable or resistant tumors like sarcomas. However, hadron-therapy with carbon ions stays underused and raises some concerns about potential side effects for patients. Chondrosarcoma is a cartilaginous tumor, chemo- and radiation-resistant, that lacks reference models for basic and pre-clinical studies in radiation-biology. Most studies about cellular effects of ionizing radiation, including hadrons, were performed under growth conditions dramatically different from human homeostasis. Tridimensional in vitro models are a fair alternative to animal models to approach tissue and tumors microenvironment. METHODS: By using a collagen matrix, standardized culture conditions, physiological oxygen tension and a well defined chondrosarcoma cell line, we developed a pertinent in vitro 3D model for hadron-biology studies. Low- and high-Linear Energy Transfer (LET) ionizing radiations from GANIL facilities of ~1 keV/µm and 103 ± 4 keV/µm were used respectively, at 2 Gy single dose. The impact of radiation quality on chondrosarcoma cells cultivated in 3D was analyzed on cell death, cell proliferation and DNA repair. RESULTS: A fair distribution of chondrosarcoma cells was observed in the whole 3D scaffold. Moreover, LET distribution in depth, for ions, was calculated and found acceptable for radiation-biology studies using this kind of scaffold. No difference in cell toxicity was observed between low- and high-LET radiations but a higher rate of proliferation was displayed following high-LET irradiation. Furthermore, 3D models presented a higher and longer induction of H2AX phosphorylation after 2 Gy of high-LET compared to low-LET radiations. CONCLUSIONS: The presented results show the feasibility and usefulness of our 3D chondrosarcoma model in the study of the impact of radiation quality on cell fate. The observed changes in our tissue-like model after ionizing radiation exposure may explain some discrepancies between radiation-biology studies and clinical data.


Subject(s)
Cell Culture Techniques , Chondrosarcoma/pathology , In Vitro Techniques , Animals , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Chondrosarcoma/radiotherapy , DNA Repair , Histones/metabolism , Humans , Mice , Radiation Dosage , Radiation, Ionizing , Radiotherapy/methods , Radiotherapy/standards
20.
PLoS One ; 10(3): e0119334, 2015.
Article in English | MEDLINE | ID: mdl-25837977

ABSTRACT

While human mesenchymal stem cells (hMSCs), either in the bone marrow or in tumour microenvironment could be targeted by radiotherapy, their response is poorly understood. The oxic effects on radiosensitivity, cell cycle progression are largely unknown, and the radiation effects on hMSCs differentiation capacities remained unexplored. Here we analysed hMSCs viability and cell cycle progression in 21% O2 and 3% O2 conditions after medical X-rays irradiation. Differentiation towards osteogenesis and chondrogenesis after irradiation was evaluated through an analysis of differentiation specific genes. Finally, a 3D culture model in hypoxia was used to evaluate chondrogenesis in conditions mimicking the natural hMSCs microenvironment. The hMSCs radiosensitivity was not affected by O2 tension. A decreased number of cells in S phase and an increase in G2/M were observed in both O2 tensions after 16 hours but hMSCs released from the G2/M arrest and proliferated at day 7. Osteogenesis was increased after irradiation with an enhancement of mRNA expression of specific osteogenic genes (alkaline phosphatase, osteopontin). Osteoblastic differentiation was altered since matrix deposition was impaired with a decreased expression of collagen I, probably through an increase of its degradation by MMP-3. After induction in monolayers, chondrogenesis was altered after irradiation with an increase in COL1A1 and a decrease in both SOX9 and ACAN mRNA expression. After induction in a 3D culture in hypoxia, chondrogenesis was altered after irradiation with a decrease in COL2A1, ACAN and SOX9 mRNA amounts associated with a RUNX2 increase. Together with collagens I and II proteins decrease, associated to a MMP-13 expression increase, these data show a radiation-induced impairment of chondrogenesis. Finally, a radiation-induced impairment of both osteogenesis and chondrogenesis was characterised by a matrix composition alteration, through inhibition of synthesis and/or increased degradation. Alteration of osteogenesis and chondrogenesis in hMSCs could potentially explain bone/joints defects observed after radiotherapy.


Subject(s)
Cell Differentiation/radiation effects , Chondrogenesis , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/radiation effects , Osteogenesis , Adolescent , Adult , Cell Cycle/radiation effects , Cell Line , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Cellular Senescence/radiation effects , Collagen/genetics , Collagen/metabolism , G2 Phase Cell Cycle Checkpoints/radiation effects , Gene Expression , Humans , Male , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoblasts/radiation effects , Oxygen Consumption , X-Rays , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...