Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Anat ; 244(4): 541-556, 2024 04.
Article in English | MEDLINE | ID: mdl-38055909

ABSTRACT

Vocal production in birds has been the target of considerable research that mostly has focused on phylogenetically well-nested songbirds. Anatomical descriptions and recordings of many non-songbirds have often only focused on a single ontogenetic stage or sex. While basic morphology of the vocal organ (syrinx) of ostrich (Palaeognathae, Struthio camelus) has been known since the 1800s, descriptions of its vocal repertoire and syrinx anatomy since then have been incomplete or inconsistent. New toolkits now enable detailed qualitative description of internal anatomy and meristic data and allow it to be compared to vocal production. Here we describe the anatomy of the syrinx in Struthio camelus for three post-hatching ontogenetic stages and both an adult male and female utilizing dissection and contrast enhanced X-ray computed tomography (diceCT). We find changes in ring geometry and spacing through ontogeny as well as lateral labia thickness. We document a small unpaired, midline, cartilaginous structure, a "pessuliform process" at the tracheobronchial juncture present throughout ontogeny and in both males and females. Investigation of the vocal repertoire of ostriches across ontogeny using a new dataset of 77 recordings led to identification of four vocalizations not previously reported in the literature, including the simultaneous production of a hiss and tonal. We find syrinx morphology largely consistent across ontogeny and in male and female adults. Both are capable of producing long duration tonal calls, but these may be more frequent in male birds. Closed-mouth boom calls remain unique to males. A detailed understanding of diversity in parts of early diverging clades is pivotal in attempting to estimate features of the ancestral syrinx in birds and how avian vocalization evolved.


Subject(s)
Songbirds , Struthioniformes , Animals , Male , Female , Struthioniformes/anatomy & histology , Vocalization, Animal , Trachea/anatomy & histology , Radiography
2.
J Anat ; 243(6): 1007-1023, 2023 12.
Article in English | MEDLINE | ID: mdl-37515428

ABSTRACT

Natal down is a feather stage that differs in both form and function from the definitive feathers of adult birds. It has a simpler structure that has been speculated to be similar to the body coverings of non-avian dinosaurs. However, inference of the evolution of natal down has been limited by our understanding of its structural variation in extant birds. Most descriptive work has focused on neognathous birds, limiting our knowledge of the full diversity of feathers in extant taxa. Here, we describe the natal down of a post-hatch ostrich (Struthio camelus) and compare it to that of a post-hatch quail (Coturnix coturnix). We confirm the presence of featherless spaces (apteria) in S. camelus and the lack of barbules on the tips of natal down in both species. We also find differences between dorsal and ventral natal down structures, such as barbule density in S. camelus and the extent of the bare portion of the barb in both species. Surprisingly, we do not find that the neoptiles of either species follow the ideal morphologies for increasing insulation. Finally, we hypothesize that the different barb types present in S. camelus natal down result from a large addition of new barb ridges during development, which is not known except in feathers with a rachis. These results have implications for our understanding of how structure informs function and development in understudied feather types, such as those shared by non-avian dinosaurs.


Subject(s)
Dinosaurs , Struthioniformes , Animals , Biological Evolution , Coturnix , Feathers , Quail
3.
Nat Commun ; 14(1): 914, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854679

ABSTRACT

The systematics of Madagascar's extinct elephant birds remains controversial due to large gaps in the fossil record and poor biomolecular preservation of skeletal specimens. Here, a molecular analysis of 1000-year-old fossil eggshells provides the first description of elephant bird phylogeography and offers insight into the ecology and evolution of these flightless giants. Mitochondrial genomes from across Madagascar reveal genetic variation that is correlated with eggshell morphology, stable isotope composition, and geographic distribution. The elephant bird crown is dated to ca. 30 Mya, when Madagascar is estimated to have become less arid as it moved northward. High levels of between-clade genetic variation support reclassifying Mullerornis into a separate family. Low levels of within-clade genetic variation suggest there were only two elephant bird genera existing in southern Madagascar during the Holocene. However, we find an eggshell collection from Madagascar's far north that represents a unique lineage of Aepyornis. Furthermore, divergence within Aepyornis coincides with the aridification of Madagascar during the early Pleistocene ca. 1.5 Ma, and is consistent with the fragmentation of populations in the highlands driving diversification and the evolution of extreme gigantism over shorts timescales. We advocate for a revision of their taxonomy that integrates palaeogenomic and palaeoecological perspectives.


Subject(s)
Birds , Egg Shell , Fossils , Animals , Birds/classification , Extinction, Biological
4.
Elife ; 122023 01 31.
Article in English | MEDLINE | ID: mdl-36719067

ABSTRACT

The avian palaeognath phylogeny has been recently revised significantly due to the advancement of genome-wide comparative analyses and provides the opportunity to trace the evolution of the microstructure and crystallography of modern dinosaur eggshells. Here, eggshells of all major clades of Palaeognathae (including extinct taxa) and selected eggshells of Neognathae and non-avian dinosaurs are analysed with electron backscatter diffraction. Our results show the detailed microstructures and crystallographies of (previously) loosely categorized ostrich-, rhea-, and tinamou-style morphotypes of palaeognath eggshells. All rhea-style eggshell appears homologous, while respective ostrich-style and tinamou-style morphotypes are best interpreted as homoplastic morphologies (independently acquired). Ancestral state reconstruction and parsimony analysis additionally show that rhea-style eggshell represents the ancestral state of palaeognath eggshells both in microstructure and crystallography. The ornithological and palaeontological implications of the current study are not only helpful for the understanding of evolution of modern and extinct dinosaur eggshells, but also aid other disciplines where palaeognath eggshells provide useful archive for comparative contrasts (e.g. palaeoenvironmental reconstructions, geochronology, and zooarchaeology).


About 50 species of birds on the planet today do not belong to the same group as the other 10,000 currently in existence. Known as the paleognaths, this small clade features many of the largest and heaviest avian specimens on Earth, bringing together ostriches and their distant South American relatives the rheas, as well as emus and cassowaries. Kiwis and ground-dwelling species known as tinamous complete the family. None of these birds can fly, except for the tinamous. Paleognath eggs are also somewhat distinct from the rest of the avian population, being larger and sporting thicker shells. Advanced genetic analyses in the late 2000's have upended researchers' understanding of in what sequence these birds have evolved, and how they are related to each other. The new phylogenetic family tree offers the opportunity to re-evaluate previous conclusions about this group, which could in turn clarify the evolution and lifestyle of flightless modern and extinct dinosaurs. Choi et al. decided to use this updated genetic information to better understand how paleognath eggs have evolved. Traditionally, these have been loosely classified into three types (rhea-style, ostrich-style and tinamou-style) based on various morphological features. Their microstructure, however, remains poorly studied, and it is unclear whether this categorisation reflects evolutionary processes. Aiming to fill this gap, Choi et al. employed electron microscopy approaches to examine the microstructure of the eggshell in all groups of paleognath birds (including the now extinct moas from New Zealand and elephant birds from Madagascar), as well as in selected species of flying birds and non-avian dinosaurs. Combined with the new evolutionary tree and additional analyses, these experiments suggest that the ancestor of the paleognaths laid rhea-style eggs, which are still the most common type amongst the family. In fact, several non-paleognath bird eggs also showed these features. In contrast, ostrich-style and tinamou-style eggs seem to have evolved independently in several distantly related species within the group. Equipped with this knowledge, it may become possible for ornithologists to decipher how eggshells evolved in other lineages of flightless birds, and for palaeontologists to better interpret fossil bird and other dinosaur eggs.


Subject(s)
Birds , Egg Shell , Animals , Crystallography , Egg Shell/chemistry , Birds/genetics , Phylogeny , Genome , Biological Evolution
5.
J Anat ; 241(3): 641-666, 2022 09.
Article in English | MEDLINE | ID: mdl-35758681

ABSTRACT

Reptile eggshell ensures water and gas exchange during incubation and plays a key role in reproductive success. The diversity of reptilian incubation and life history strategies has led to many clade-specific structural adaptations of their eggshell, which have been studied in extant taxa (i.e. birds, crocodilians, turtles, and lepidosaurs). Most studies on non-avian eggshells were performed over 30 years ago and categorized reptile eggshells into two main types: "hard" and "soft" - sometimes with a third intermediate category, "semi-rigid." In recent years, however, debate over the evolution of eggshell structure of major reptile clades has revealed how definitions of hard and soft eggshells influence inferred deep-time evolutionary patterns. Here, we review the diversity of extant and fossil eggshell with a focus on major reptile clades, and the criteria that have been used to define hard, soft, and semi-rigid eggshells. We show that all scoring approaches that retain these categories discretize continuous quantitative traits (e.g. eggshell thickness) and do not consider independent variation of other functionally important microstructural traits (e.g. degree of calcification, shell unit inner structure). We demonstrate the effect of three published approaches to discretizing eggshell type into hard, semi-rigid, and soft on ancestral state reconstructions using 200+ species representing all major extant and extinct reptile clades. These approaches result in different ancestral states for all major clades including Archosauria and Dinosauria, despite a difference in scoring for only 1-4% of the sample. Proposed scenarios of reptile eggshell evolution are highly conditioned by sampling, tree calibration, and lack of congruence between definitions of eggshell type. We conclude that the traditional "soft/hard/semi-rigid" classification of reptilian eggshells should be abandoned and provide guidelines for future descriptions focusing on specific functionally relevant characteristics (e.g. inner structures of shell units, pores, and membrane elements), analyses of these traits in a phylogenetic context, and sampling of previously undescribed taxa, including fossil eggs.


Subject(s)
Dinosaurs , Egg Shell , Animals , Birds , Egg Shell/chemistry , Fossils , Phylogeny , Reptiles
6.
Proc Natl Acad Sci U S A ; 119(43): e2109326119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-35609205

ABSTRACT

The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.


Subject(s)
Birds , Egg Shell , Animals , Humans , Phylogeny , Birds/genetics , DNA/genetics , Biological Evolution , Fossils , DNA, Ancient
7.
Evolution ; 75(6): 1415-1430, 2021 06.
Article in English | MEDLINE | ID: mdl-33913155

ABSTRACT

Birds share an array of unique characteristics among extant land vertebrates. Among these, external and microstructural characteristics of extant bird eggs have been linked to changes in reproductive strategy that arose among non-avian theropod dinosaurs. More recently, differences in egg proportions recovered in crown birds relative to other dinosaurs were suggested as possibly linked to avian flight, but dense sampling close to its proposed origin was lacking. Here we assess the evolution of eggshell thickness in a targeted sample of 114 dinosaurs including birds, and test the relationship of eggshell thickness with potential life history correlates and locomotor mode using phylogenetic comparative methods. Only egg mass and flight are identified as significant predictors of eggshell thickness. While a high correlation between egg mass and eggshell thickness is expected, that relationship is much stronger in flying taxa, which show a significantly higher slope and lower residual variance than flightless species. This suggests stabilizing selection of eggshell thickness among theropods, as recovered for other traits in extant birds (e.g. genome size, metabolic rate). Within living birds, Eufalconimorphae present an apomorphic increase in relative eggshell thickness which remains unexplained, as few morphological synapomorphies of this clade have been identified.


Subject(s)
Birds/anatomy & histology , Dinosaurs/anatomy & histology , Egg Shell/anatomy & histology , Locomotion/genetics , Animals , Biological Evolution , Fossils , Linear Models , Models, Genetic , Phylogeny
8.
Nature ; 583(7816): 411-414, 2020 07.
Article in English | MEDLINE | ID: mdl-32555453

ABSTRACT

Egg size and structure reflect important constraints on the reproductive and life-history characteristics of vertebrates1. More than two-thirds of all extant amniotes lay eggs2. During the Mesozoic era (around 250 million to 65 million years ago), body sizes reached extremes; nevertheless, the largest known egg belongs to the only recently extinct elephant bird3, which was roughly 66 million years younger than the last nonavian dinosaurs and giant marine reptiles. Here we report a new type of egg discovered in nearshore marine deposits from the Late Cretaceous period (roughly 68 million years ago) of Antarctica. It exceeds all nonavian dinosaur eggs in volume and differs from them in structure. Although the elephant bird egg is slightly larger, its eggshell is roughly five times thicker and shows a substantial prismatic layer and complex pore structure4. By contrast, the new fossil, visibly collapsed and folded, presents a thin eggshell with a layered structure that lacks a prismatic layer and distinct pores, and is similar to that of most extant lizards and snakes (Lepidosauria)5. The identity of the animal that laid the egg is unknown, but these preserved morphologies are consistent with the skeletal remains of mosasaurs (large marine lepidosaurs) found nearby. They are not consistent with described morphologies of dinosaur eggs of a similar size class. Phylogenetic analyses of traits for 259 lepidosaur species plus outgroups suggest that the egg belonged to an individual that was at least 7 metres long, hypothesized to be a giant marine reptile, all clades of which have previously been proposed to show live birth6. Such a large egg with a relatively thin eggshell may reflect derived constraints associated with body shape, reproductive investment linked with gigantism, and lepidosaurian viviparity, in which a 'vestigial' egg is laid and hatches immediately7.


Subject(s)
Dinosaurs , Egg Shell/anatomy & histology , Egg Shell/chemistry , Fossils , Hardness , Animals , Biological Evolution , Dinosaurs/classification
9.
Philos Trans R Soc Lond B Biol Sci ; 375(1793): 20190136, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31928191

ABSTRACT

Endothermy, i.e. the endogenous production of metabolic heat, has evolved multiple times among vertebrates, and several strategies of heat production have been studied extensively by physiologists over the course of the twentieth century. The independent acquisition of endothermy by mammals and birds has been the subject of many hypotheses regarding their origin and associated evolutionary constraints. Many groups of vertebrates, however, are thought to possess other mechanisms of heat production, and alternative ways to regulate thermogenesis that are not always considered in the palaeontological literature. Here, we perform a review of the mechanisms involved in heat production, with a focus on cellular and molecular mechanisms, in a phylogenetic context encompassing the entire vertebrate diversity. We show that endothermy in mammals and birds is not as well defined as commonly assumed by evolutionary biologists and consists of a vast array of physiological strategies, many of which are currently unknown. We also describe strategies found in other vertebrates, which may not always be considered endothermy, but nonetheless correspond to a process of active thermogenesis. We conclude that endothermy is a highly plastic character in vertebrates and provides a guideline on terminology and occurrences of the different types of heat production in vertebrate evolution. This article is part of the theme issue 'Vertebrate palaeophysiology'.


Subject(s)
Biological Evolution , Birds/physiology , Mammals/physiology , Thermogenesis , Animals , Body Temperature Regulation , Energy Metabolism , Terminology as Topic , Vertebrates/physiology
10.
Sci Rep ; 9(1): 9323, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31249366

ABSTRACT

As the largest and among the most behaviourally complex extant terrestrial mammals, proboscideans (elephants and their extinct relatives) are iconic representatives of the modern megafauna. The timing of the evolution of large brain size and above average encephalization quotient remains poorly understood due to the paucity of described endocranial casts. Here we created the most complete dataset on proboscidean endocranial capacity and analysed it using phylogenetic comparative methods and ancestral character states reconstruction using maximum likelihood. Our analyses support that, in general, brain size and body mass co-evolved in proboscideans across the Cenozoic; however, this pattern appears disrupted by two instances of specific increases in relative brain size in the late Oligocene and early Miocene. These increases in encephalization quotients seem to correspond to intervals of important climatic, environmental and faunal changes in Africa that may have positively selected for larger brain size or body mass.


Subject(s)
Biological Evolution , Brain , Proboscidea Mammal , Animals , Fossils , Phylogeny
11.
PeerJ ; 6: e5216, 2018.
Article in English | MEDLINE | ID: mdl-30018860

ABSTRACT

Bone microstructure has long been known as a powerful tool to investigate lifestyle-related biomechanical constraints, and many studies have focused on identifying such constraints in the limb bones of aquatic or arboreal mammals in recent years. The limb bone microstructure of fossorial mammals, however, has not been extensively described. Furthermore, so far, studies on this subject have always focused on the bone histology of small burrowers, such as subterranean rodents or true moles. Physiological constraints associated with digging, however, are known to be strongly influenced by body size, and larger burrowers are likely to exhibit a histological profile more conspicuously influenced by fossorial activity. Here, we describe for the first time the limb bone histology of the aardvark (Orycteropus afer), the largest extant burrowing mammal. The general pattern is very similar for all six sampled limb bones (i.e., humerus, radius, ulna, femur, tibia, and fibula). Most of the cortex at midshaft is comprised of compacted coarse cancellous bone (CCCB), an endosteal tissue formed in the metaphyses through the compaction of bony trabeculae. Conversely, the periosteal bone is highly resorbed in all sections, and is reduced to a thin outer layer, suggesting a pattern of strong cortical drift. This pattern contrasts with that of most large mammals, in which cortical bone is of mostly periosteal origin, and CCCB, being a very compliant bone tissue type, is usually resorbed or remodeled during ontogeny. The link between histology and muscle attachment sites, as well as the influence of the semi-arid environment and ant-eating habits of the aardvark on its bone microstructure, are discussed. We hypothesize that the unusual histological profile of the aardvark is likely the outcome of physiological constraints due to both extensive digging behavior and strong metabolic restrictions. Adaptations to fossoriality are thus the result of a physiological compromise between limited food availability, an environment with high temperature variability, and the need for biomechanical resistance during digging. These results highlight the difficulties of deciphering all factors potentially involved in bone formation in fossorial mammals. Even though the formation and maintaining of CCCB through ontogeny in the aardvark cannot be unambiguously linked with its fossorial habits, a high amount of CCCB has been observed in the limb bones of other large burrowing mammals. The inclusion of such large burrowers in future histological studies is thus likely to improve our understanding of the functional link between bone growth and fossorial lifestyle in an evolutionary context.

12.
Zoology (Jena) ; 122: 90-99, 2017 06.
Article in English | MEDLINE | ID: mdl-28495051

ABSTRACT

The furcula is a specialized bone in birds involved in flight function. Its morphology has been shown to reflect different flight styles from soaring/gliding birds, subaqueous flight to high-frequency flapping flyers. The strain experienced by furculae can vary depending on flight type. Bone remodeling is a response to damage incurred from different strain magnitudes and types. In this study, we tested whether a bone microstructural feature, namely Haversian bone density, differs in birds with different flight styles, and reassessed previous work using phylogenetic comparative methods that assume an evolutionary model with additional taxa. We show that soaring birds have higher Haversian bone densities than birds with a flapping style of flight. This result is probably linked to the fact that the furculae of soaring birds provide less protraction force and more depression force than furculae of birds showing other kinds of flight. The whole bone area is another explanatory factor, which confirms the fact that size is an important consideration in Haversian bone development. All birds, however, display Haversian bone development in their furculae, and other factors like age could be affecting the response of Haversian bone development.


Subject(s)
Birds/anatomy & histology , Birds/physiology , Bone and Bones/anatomy & histology , Flight, Animal/physiology , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Animals , Biomechanical Phenomena , Birds/genetics , Phylogeny , Species Specificity
13.
Syst Biol ; 65(6): 989-996, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27073251

ABSTRACT

Metabolic heat production in archosaurs has played an important role in their evolutionary radiation during the Mesozoic, and their ancestral metabolic condition has long been a matter of debate in systematics and palaeontology. The study of fossil bone histology provides crucial information on bone growth rate, which has been used to indirectly investigate the evolution of thermometabolism in archosaurs. However, no quantitative estimation of metabolic rate has ever been performed on fossils using bone histological features. Moreover, to date, no inference model has included phylogenetic information in the form of predictive variables. Here we performed statistical predictive modeling using the new method of phylogenetic eigenvector maps on a set of bone histological features for a sample of extant and extinct vertebrates, to estimate metabolic rates of fossil archosauromorphs. This modeling procedure serves as a case study for eigenvector-based predictive modeling in a phylogenetic context, as well as an investigation of the poorly known evolutionary patterns of metabolic rate in archosaurs. Our results show that Mesozoic theropod dinosaurs exhibit metabolic rates very close to those found in modern birds, that archosaurs share a higher ancestral metabolic rate than that of extant ectotherms, and that this derived high metabolic rate was acquired at a much more inclusive level of the phylogenetic tree, among non-archosaurian archosauromorphs. These results also highlight the difficulties of assigning a given heat production strategy (i.e., endothermy, ectothermy) to an estimated metabolic rate value, and confirm findings of previous studies that the definition of the endotherm/ectotherm dichotomy may be ambiguous.


Subject(s)
Basal Metabolism/physiology , Dinosaurs/physiology , Fossils , Models, Biological , Phylogeny , Animals , Biological Evolution , Birds , Paleontology
SELECTION OF CITATIONS
SEARCH DETAIL
...