Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Arch Pediatr ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38719651

ABSTRACT

INTRODUCTION: KBG syndrome is an autosomal dominant, polymalformative genetic syndrome that is mainly associated with neurodevelopmental and learning disorders, intellectual disability, behavioral disorders, and epilepsy as well as characteristic dysmorphic features, short stature, and ENT (ear, nose, and throat) abnormalities. However, the diagnostic pathway of these individuals is an element that has not been broadly evaluated. The main aim of this study was therefore to characterize the diagnostic pathway for these individuals, by assessing the different healthcare professionals involved and the main referral elements. METHOD: This was a multicenter, retrospective, descriptive study. A cohort of 30 individuals with KBG syndrome who were followed up at Poitiers University Hospital and Bordeaux University Hospital we recruited. RESULTS: Pediatricians were the main healthcare professionals who referred individuals for genetic consultation, and the main reason for referral was an assessment of learning delays or intellectual disability, in association with other abnormalities. CONCLUSION: Pediatricians play a crucial role in the diagnostic guidance of individuals with KBG syndrome, and the main reason for referral remains the assessment of a learning delay or intellectual disability. Healthcare professionals must therefore remain attentive to the child's development and the various anomalies associated with it, in particular characteristic dysmorphic features, behavioral disorders, and statural growth.

2.
Front Genet ; 14: 1099995, 2023.
Article in English | MEDLINE | ID: mdl-37035737

ABSTRACT

Introduction: Prenatal ultrasound (US) anomalies are detected in around 5%-10% of pregnancies. In prenatal diagnosis, exome sequencing (ES) diagnostic yield ranges from 6% to 80% depending on the inclusion criteria. We describe the first French national multicenter pilot study aiming to implement ES in prenatal diagnosis following the detection of anomalies on US. Patients and methods: We prospectively performed prenatal trio-ES in 150 fetuses with at least two US anomalies or one US anomaly known to be frequently linked to a genetic disorder. Trio-ES was only performed if the results could influence pregnancy management. Chromosomal microarray (CMA) was performed before or in parallel. Results: A causal diagnosis was identified in 52/150 fetuses (34%) with a median time to diagnosis of 28 days, which rose to 56/150 fetuses (37%) after additional investigation. Sporadic occurrences were identified in 34/56 (60%) fetuses and unfavorable vital and/or neurodevelopmental prognosis was made in 13/56 (24%) fetuses. The overall diagnostic yield was 41% (37/89) with first-line trio-ES versus 31% (19/61) after normal CMA. Trio-ES and CMA were systematically concordant for identification of pathogenic CNV. Conclusion: Trio-ES provided a substantial prenatal diagnostic yield, similar to postnatal diagnosis with a median turnaround of approximately 1 month, supporting its routine implementation during the detection of prenatal US anomalies.

3.
Ann Neurol ; 94(2): 332-349, 2023 08.
Article in English | MEDLINE | ID: mdl-37062836

ABSTRACT

OBJECTIVE: Pathogenic variants in KCNT2 are rare causes of developmental epileptic encephalopathy (DEE). We herein describe the phenotypic and genetic features of patients with KCNT2-related DEE, and the in vitro functional and pharmacological properties of KCNT2 channels carrying 14 novel or previously untested variants. METHODS: Twenty-five patients harboring KCNT2 variants were investigated: 12 were identified through an international collaborative network, 13 were retrieved from the literature. Clinical data were collected and included in a standardized phenotyping sheet. Novel variants were detected using exome sequencing and classified using ACMG criteria. Functional and pharmacological studies were performed by whole-cell electrophysiology in HEK-293 and SH-SY5Y cells. RESULTS: The phenotypic spectrum encompassed: (a) intellectual disability/developmental delay (21/22 individuals with available information), ranging from mild to severe/profound; (b) epilepsy (15/25); (c) neurological impairment, with altered muscle tone (14/22); (d) dysmorphisms (13/20). Nineteen pathogenic KCNT2 variants were found (9 new, 10 reported previously): 16 missense, 1 in-frame deletion of a single amino acid, 1 nonsense, and 1 frameshift. Among tested variants, 8 showed gain-of-function (GoF), and 6 loss-of-function (LoF) features when expressed heterologously in vitro. Quinidine and fluoxetine blocked all GoF variants, whereas loxapine and riluzole activated some LoF variants while blocking others. INTERPRETATION: We expanded the phenotypic and genotypic spectrum of KCNT2-related disorders, highlighting novel genotype-phenotype associations. Pathogenic KCNT2 variants cause GoF or LoF in vitro phenotypes, and each shows a unique pharmacological profile, suggesting the need for in vitro functional and pharmacological investigation to enable targeted therapies based on the molecular phenotype. ANN NEUROL 2023;94:332-349.


Subject(s)
Intellectual Disability , Neuroblastoma , Humans , HEK293 Cells , Phenotype , Genotype , Intellectual Disability/drug therapy , Intellectual Disability/genetics , Potassium Channels, Sodium-Activated/genetics
4.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37071997

ABSTRACT

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Female , Male , Developmental Disabilities/genetics , Developmental Disabilities/complications , Haploinsufficiency/genetics , Intellectual Disability/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Humans
5.
Hum Mutat ; 43(12): 1882-1897, 2022 12.
Article in English | MEDLINE | ID: mdl-35842780

ABSTRACT

Cornelia de Lange syndrome (CdLS; MIM# 122470) is a rare developmental disorder. Pathogenic variants in 5 genes explain approximately 50% cases, leaving the other 50% unsolved. We performed whole genome sequencing (WGS) ± RNA sequencing (RNA-seq) in 5 unsolved trios fulfilling the following criteria: (i) clinical diagnosis of classic CdLS, (ii) negative gene panel sequencing from blood and saliva-isolated DNA, (iii) unaffected parents' DNA samples available and (iv) proband's blood-isolated RNA available. A pathogenic de novo mutation (DNM) was observed in a CdLS differential diagnosis gene in 3/5 patients, namely POU3F3, SPEN, and TAF1. In the other two, we identified two distinct deep intronic DNM in NIPBL predicted to create a novel splice site. RT-PCRs and RNA-Seq showed aberrant transcripts leading to the creation of a novel frameshift exon. Our findings suggest the relevance of WGS in unsolved suspected CdLS cases and that deep intronic variants may account for a proportion of them.


Subject(s)
De Lange Syndrome , Humans , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , De Lange Syndrome/pathology , Diagnosis, Differential , Cell Cycle Proteins/genetics , Introns , Mutation , Sequence Analysis, RNA , Phenotype
6.
Am J Hum Genet ; 109(5): 909-927, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35390279

ABSTRACT

Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.


Subject(s)
Brain Diseases , Zebrafish , Animals , Brain Diseases/pathology , Brain Stem , Cerebellum/abnormalities , Cerebellum/pathology , Developmental Disabilities , Histone-Lysine N-Methyltransferase/genetics , Humans , Mice , Mutation/genetics , Nervous System Malformations , Neurogenesis/genetics , Purkinje Cells/metabolism , Transcription Factors/genetics , Zebrafish/metabolism
7.
Genes (Basel) ; 12(11)2021 11 19.
Article in English | MEDLINE | ID: mdl-34828434

ABSTRACT

Congenital erythropoietic porphyria (CEP, OMIM #606938) is a severe autosomal recessive inborn error of heme biosynthesis. This rare panethnic disease is due to a deficiency of uroporphyrinogen III synthase (or cosynthase). Subsequently, its substrate, the hydroxymethylbilane is subsequently converted into uroporphyrinogen I in a non-enzymatic manner. Of note, uroporphyrinogen I cannot be metabolized into heme and its accumulation in red blood cells results in intramedullary and intravascular hemolysis. The related clinical symptoms occur most frequently during antenatal or neonatal periods but may also appear in late adulthood. The main antenatal clinical presentation is a non-immune hydrops fetalis. We report here two cases of antenatal CEP deficiency and a review of the reported cases in the literature.


Subject(s)
Hydrops Fetalis/genetics , Phenotype , Porphyria, Erythropoietic/genetics , Uroporphyrinogen III Synthetase/genetics , Adult , Female , Humans , Hydrops Fetalis/pathology , Porphyria, Erythropoietic/pathology , Pregnancy
8.
J Exp Med ; 218(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34546337

ABSTRACT

Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders. Understanding of their pathogenic mechanisms remains sparse, and therapeutic options are lacking. We characterized a mouse model lacking the Cyp2u1 gene, loss of which is known to be involved in a complex form of these diseases in humans. We showed that this model partially recapitulated the clinical and biochemical phenotypes of patients. Using electron microscopy, lipidomic, and proteomic studies, we identified vitamin B2 as a substrate of the CYP2U1 enzyme, as well as coenzyme Q, neopterin, and IFN-α levels as putative biomarkers in mice and fluids obtained from the largest series of CYP2U1-mutated patients reported so far. We also confirmed brain calcifications as a potential biomarker in patients. Our results suggest that CYP2U1 deficiency disrupts mitochondrial function and impacts proper neurodevelopment, which could be prevented by folate supplementation in our mouse model, followed by a neurodegenerative process altering multiple neuronal and extraneuronal tissues.


Subject(s)
Cytochrome P450 Family 2/genetics , Cytochrome P450 Family 2/metabolism , Folic Acid Deficiency/genetics , Folic Acid Deficiency/metabolism , Folic Acid/pharmacology , Animals , Biomarkers/metabolism , Brain/metabolism , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mutation/genetics , Phenotype , Proteomics/methods
9.
Eur J Hum Genet ; 29(1): 51-60, 2021 01.
Article in English | MEDLINE | ID: mdl-32788663

ABSTRACT

RASopathies are caused by variants in genes encoding components or modulators of the RAS/MAPK signaling pathway. Noonan syndrome is the most common entity among this group of disorders and is characterized by heart defects, short stature, variable developmental delay, and typical facial features. Heterozygous variants in SOS2, encoding a guanine nucleotide exchange factor for RAS, have recently been identified in patients with Noonan syndrome. The number of published cases with SOS2-related Noonan syndrome is still limited and little is known about genotype-phenotype correlations. We collected previously unpublished clinical and genotype data from 17 individuals carrying a disease-causing SOS2 variant. Most individuals had one of the previously reported dominant pathogenic variants; only four had novel changes at the established hotspots for variants that affect protein function. The overall phenotype of the 17 patients fits well into the spectrum of Noonan syndrome and is most similar to the phenotype observed in patients with SOS1-related Noonan syndrome, with ectodermal anomalies as common features and short stature and learning disabilities as relatively infrequent findings compared to the average Noonan syndrome phenotype. The spectrum of heart defects in SOS2-related Noonan syndrome was consistent with the known spectrum of cardiac anomalies in RASopathies, but no specific heart defect was particularly predominating. Notably, lymphatic anomalies were extraordinarily frequent, affecting more than half of the patients. We therefore conclude that SOS2-related Noonan syndrome is associated with a particularly high risk of lymphatic complications that may have a significant impact on morbidity and quality of life.


Subject(s)
Lymphatic System/pathology , Noonan Syndrome/genetics , Phenotype , Son of Sevenless Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation , Noonan Syndrome/pathology
10.
Orphanet J Rare Dis ; 15(1): 136, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493418

ABSTRACT

BACKGROUND: Behavioral problems are an important issue for people with CHARGE syndrome. The similarity of their behavioral traits with those of people with autism raises questions. In a large national cross-sectional study, we used specific standardized tools for diagnosing autism (Autism Diagnostic Interview-Revised and Diagnostic and Statistical Manual of Mental Disorders, 5th edition, DSM-5) and evaluating behavioral disorders (Developmental Behavior Checklist-Parents, DBC-P) to investigate a series of individuals with CHARGE syndrome, defined by Verloes's criteria. We evaluated their adaptive functioning level and sensory particularities and extracted several data items from medical files to assess as potential risk factors for autism and/or behavioral disorders. RESULTS: We investigated 64 individuals with CHARGE syndrome (35 females; mean age 10.7 years, SD 7.1 years). Among 46 participants with complete results for the Autism Diagnostic Interview-Revised (ADI-R), 13 (28%) had a diagnosis of autism according to the ADI-R, and 25 (54%) had a diagnosis of autism spectrum disorder (ASD) according to the DSM-5 criteria. The frequency of autistic traits in the entire group was a continuum. We did not identify any risk factor for ASD but found a negative correlation between the ADI-R score and adaptive functioning level. Among 48 participants with data for the DBC-P, 26 (55%) had behavioral disorders, which were more frequent in patients with radiological brain anomalies, impaired adaptive functioning, later independent walking, and more sensory particularities. CONCLUSIONS: ASD should be considered to be an independent risk requiring early screening and management in children born with CHARGE syndrome.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , CHARGE Syndrome , Autism Spectrum Disorder/diagnosis , CHARGE Syndrome/diagnosis , Child , Cross-Sectional Studies , Diagnostic and Statistical Manual of Mental Disorders , Female , Humans
11.
Genet Med ; 22(1): 181-188, 2020 01.
Article in English | MEDLINE | ID: mdl-31363182

ABSTRACT

PURPOSE: Kabuki syndrome (KS) (OMIM 147920 and 300867) is a rare genetic disorder characterized by specific facial features, intellectual disability, and various malformations. Immunopathological manifestations seem prevalent and increase the morbimortality. To assess the frequency and severity of the manifestations, we measured the prevalence of immunopathological manifestations as well as genotype-phenotype correlations in KS individuals from a registry. METHODS: Data were for 177 KS individuals with KDM6A or KMT2D pathogenic variants. Questionnaires to clinicians were used to assess the presence of immunodeficiency and autoimmune diseases both on a clinical and biological basis. RESULTS: Overall, 44.1% (78/177) and 58.2% (46/79) of KS individuals exhibited infection susceptibility and hypogammaglobulinemia, respectively; 13.6% (24/177) had autoimmune disease (AID; 25.6% [11/43] in adults), 5.6% (10/177) with ≥2 AID manifestations. The most frequent AID manifestations were immune thrombocytopenic purpura (7.3% [13/177]) and autoimmune hemolytic anemia (4.0% [7/177]). Among nonhematological manifestations, vitiligo was frequent. Immune thrombocytopenic purpura was frequent with missense versus other types of variants (p = 0.027). CONCLUSION: The high prevalence of immunopathological manifestations in KS demonstrates the importance of systematic screening and efficient preventive management of these treatable and sometimes life-threatening conditions.


Subject(s)
Autoimmune Diseases/epidemiology , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/complications , Histone Demethylases/genetics , Neoplasm Proteins/genetics , Primary Immunodeficiency Diseases/epidemiology , Vestibular Diseases/complications , Abnormalities, Multiple/genetics , Abnormalities, Multiple/immunology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Genetic Association Studies , Hematologic Diseases/genetics , Hematologic Diseases/immunology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation , Prevalence , Registries , Severity of Illness Index , Vestibular Diseases/genetics , Vestibular Diseases/immunology , Young Adult
12.
Eur J Hum Genet ; 26(2): 287-292, 2018 02.
Article in English | MEDLINE | ID: mdl-29255276

ABSTRACT

CHARGE syndrome is a rare genetic disorder mainly due to de novo and private truncating mutations of CHD7 gene. Here we report an intriguing hot spot of intronic mutations (c.5405-7G > A, c.5405-13G > A, c.5405-17G > A and c.5405-18C > A) located in CHD7 IVS25. Combining computational in silico analysis, experimental branch-point determination and in vitro minigene assays, our study explains this mutation hot spot by a particular genomic context, including the weakness of the IVS25 natural acceptor-site and an unconventional lariat sequence localized outside the common 40 bp upstream the acceptor splice site. For each of the mutations reported here, bioinformatic tools indicated a newly created 3' splice site, of which the existence was confirmed using pSpliceExpress, an easy-to-use and reliable splicing reporter tool. Our study emphasizes the idea that combining these two complementary approaches could increase the efficiency of routine molecular diagnosis.


Subject(s)
CHARGE Syndrome/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Mutation , RNA Splice Sites , Child , Computational Biology/methods , Humans , Male , Real-Time Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods
13.
Am J Med Genet C Semin Med Genet ; 175(4): 417-430, 2017 12.
Article in English | MEDLINE | ID: mdl-29178447

ABSTRACT

CHARGE syndrome (CS) is a genetic disorder whose first description included Coloboma, Heart disease, Atresia of choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies and deafness, most often caused by a genetic mutation in the CHD7 gene. Two features were then added: semicircular canal anomalies and arhinencephaly/olfactory bulb agenesis, with classification of typical, partial, or atypical forms on the basis of major and minor clinical criteria. The detection rate of a pathogenic variant in the CHD7 gene varies from 67% to 90%. To try to have an overview of this heterogenous clinical condition and specify a genotype-phenotype relation, we conducted a national study of phenotype and genotype in 119 patients with CS. Selected clinical diagnostic criteria were from Verloes (2005), updated by Blake & Prasad (). Besides obtaining a detailed clinical description, when possible, patients underwent a full ophthalmologic examination, audiometry, temporal bone CT scan, gonadotropin analysis, and olfactory-bulb MRI. All patients underwent CHD7 sequencing and MLPA analysis. We found a pathogenic CHD7 variant in 83% of typical CS cases and 58% of atypical cases. Pathogenic variants in the CHD7 gene were classified by the expected impact on the protein. In all, 90% of patients had a typical form of CS and 10% an atypical form. The most frequent features were deafness/semicircular canal hypoplasia (94%), pituitary defect/hypogonadism (89%), external ear anomalies (87%), square-shaped face (81%), and arhinencephaly/anosmia (80%). Coloboma (73%), heart defects (65%), and choanal atresia (43%) were less frequent.


Subject(s)
CHARGE Syndrome/diagnosis , CHARGE Syndrome/genetics , Genetic Association Studies , Genotype , Phenotype , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adolescent , Adult , Alleles , Amino Acid Substitution , Central Nervous System/abnormalities , Child , Child, Preschool , Cohort Studies , Cranial Nerves/abnormalities , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Female , France , Genetic Testing , Humans , Infant , Male , Molecular Diagnostic Techniques , Young Adult
14.
Eur J Med Genet ; 59(9): 483-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27452446

ABSTRACT

Array comparative genomic hybridization (aCGH) is now widely adopted as a first-tier clinical diagnostic test for patients with developmental delay (DD)/intellectual disability (ID), autism spectrum disorders, and multiple congenital anomalies. Nevertheless, classic karyotyping still has its impact in diagnosing genetic diseases, particularly mosaic cases. We report on a 30 year old patient with syndromic intellectual disability, a 22q13.2 microdeletion and mosaic trisomy 22. The patient had the following clinical features: intrauterine growth retardation at birth, hypotonia, cryptorchidism, facial asymmetry, enophthalmus, mild prognathism, bifid uvula, hypoplastic upper limb phalanges, DD including speech delay, and ID. Whole genome aCGH showed a de novo 1 Mb interstitial heterozygous deletion in 22q13.2, confirmed by fluorescence in situ hybridization in all cells examined. Moreover, 18% cells had an extra chromosome 22 suggesting a trisomy 22 mosaicism. Almost all 22q13 deletions published so far have been terminal deletions with variable sizes (100 kb to over 9 Mb). Very few cases of interstitial 22q13.2 deletions were reported. In its mosaic form, trisomy 22 is compatible with life, and there are about 20 reports in the literature. It has a variable clinical presentation: growth restriction, dysmorphic features, cardiovascular abnormalities, hemihyperplasia, genitourinary tract anomalies and ID. Neurodevelopmental outcome ranges from normal to severe DD. The patient presents clinical features that are common to both the interstitial 22q13 deletion and the mosaic trisomy 22; characteristics related to the interstitial deletion alone and others explained solely by the mosaic trisomy. Our case points out the role of conventional cytogenetic tools in mosaic cases that could be missed by microarray technology. We therefore suggest the combination of both conventional and molecular karyotyping in the investigation of certain genetic diseases.


Subject(s)
Chromosome Disorders/genetics , Chromosomes, Human, Pair 22 , Intellectual Disability/genetics , Trisomy/genetics , Uniparental Disomy/genetics , Adult , Chromosome Aberrations , Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Comparative Genomic Hybridization/methods , Developmental Disabilities/genetics , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Language Development Disorders/genetics , Male , Mosaicism
15.
Prenat Diagn ; 36(6): 561-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27061523

ABSTRACT

BACKGROUND: CHARGE syndrome is a multiple congenital anomaly syndrome caused by mutations in CHD7. Diagnostic criteria have been proposed to improve diagnosis in fetuses at clinicopathological survey, but no criteria exist for fetal diagnosis during pregnancy. METHOD: We collected prenatal findings of 12 children with CHARGE syndrome diagnosed in the first 3 months and a CHD7 mutation. We retrieved data on prenatal ultrasound (US) follow-up, fetal supplementary investigations, and results of postnatal evaluation. RESULT: Seven pregnancies were complicated by the identification of isolated or multiple congenital anomalies. CHARGE syndrome was suspected in three fetuses but could not be confirmed despite additional examinations. Retrospectively, several postnatal findings could have been seen if they had been specifically searched. Intrauterine growth restriction, previously proposed as an exclusion criterion, complicated two pregnancies and is thus compatible with the diagnosis. CONCLUSION: Diagnosis of CHARGE syndrome remains difficult during pregnancy. If the diagnosis of CHARGE syndrome is raised in utero, we suggest a careful US examination to identify typical external ears, choanal atresia, or microphthalmia. Fetal brain magnetic resonance imaging can be helpful, but a normal result does not exclude the diagnosis. When CHARGE syndrome is highly suspected, CHD7 molecular analysis must be proposed to confirm the diagnosis. © 2016 John Wiley & Sons, Ltd.


Subject(s)
CHARGE Syndrome/diagnostic imaging , Cerebral Ventricles/abnormalities , Cerebral Ventricles/diagnostic imaging , Cleft Lip/diagnostic imaging , Craniofacial Abnormalities/diagnostic imaging , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Ear, External/abnormalities , Ear, External/diagnostic imaging , Female , Fetal Growth Retardation/diagnostic imaging , Heart Septal Defects/diagnostic imaging , Humans , Infant , Infant, Newborn , Kidney , Male , Phenotype , Polyhydramnios/diagnostic imaging , Pregnancy , Retrospective Studies , Thymus Gland/abnormalities , Thymus Gland/diagnostic imaging , Ultrasonography, Prenatal , Ureter/abnormalities , Ureter/diagnostic imaging , Urogenital Abnormalities/diagnostic imaging
16.
Am J Hum Genet ; 97(2): 311-8, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26166481

ABSTRACT

KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies.


Subject(s)
Cell Cycle Proteins/genetics , Ciliary Motility Disorders/genetics , Codon, Nonsense/genetics , Hand Deformities, Congenital/genetics , Heart Defects, Congenital/genetics , Hydrocephalus/genetics , Phenotype , Short Rib-Polydactyly Syndrome/genetics , Base Sequence , Ciliary Motility Disorders/pathology , Europe, Eastern , Fatal Outcome , Founder Effect , Humans , Likelihood Functions , Molecular Sequence Data , Pedigree , Sequence Analysis, DNA
17.
Hum Mol Genet ; 23(9): 2279-89, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24319099

ABSTRACT

Non-syndromic arthrogryposis multiplex congenita (AMC) is characterized by multiple congenital contractures resulting from reduced fetal mobility. Genetic mapping and whole exome sequencing (WES) were performed in 31 multiplex and/or consanguineous undiagnosed AMC families. Although this approach identified known AMC genes, we here report pathogenic mutations in two new genes. Homozygous frameshift mutations in CNTNAP1 were found in four unrelated families. Patients showed a marked reduction in motor nerve conduction velocity (<10 m/s) and transmission electron microscopy (TEM) of sciatic nerve in the index cases revealed severe abnormalities of both nodes of Ranvier width and myelinated axons. CNTNAP1 encodes CASPR, an essential component of node of Ranvier domains which underlies saltatory conduction of action potentials along the myelinated axons, an important process for neuronal function. A homozygous missense mutation in adenylate cyclase 6 gene (ADCY6) was found in another family characterized by a lack of myelin in the peripheral nervous system (PNS) as determined by TEM. Morpholino knockdown of the zebrafish orthologs led to severe and specific defects in peripheral myelin in spite of the presence of Schwann cells. ADCY6 encodes a protein that belongs to the adenylate cyclase family responsible for the synthesis of cAMP. Elevation of cAMP can mimic axonal contact in vitro and upregulates myelinating signals. Our data indicate an essential and so far unknown role of ADCY6 in PNS myelination likely through the cAMP pathway. Mutations of genes encoding proteins of Ranvier domains or involved in myelination of Schwann cells are responsible for novel and severe human axoglial diseases.


Subject(s)
Adenylyl Cyclases/genetics , Arthrogryposis/genetics , Arthrogryposis/pathology , Cell Adhesion Molecules, Neuronal/genetics , Axons/pathology , Axons/ultrastructure , Female , Genetic Predisposition to Disease , Humans , Male , Microscopy, Electron, Transmission , Mutation/genetics , Myelin Sheath/pathology , Peripheral Nervous System/pathology , Peripheral Nervous System/ultrastructure , Pregnancy , Schwann Cells/metabolism
18.
J Med Genet ; 49(11): 698-707, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23024289

ABSTRACT

BACKGROUND: CHARGE syndrome is a rare, usually sporadic disorder of multiple congenital anomalies ascribed to a CHD7 gene mutation in 60% of cases. Although the syndrome is well characterised in children, only one series of 10 fetuses with CHARGE syndrome has been reported to date. Therefore, we performed a detailed clinicopathological survey in our series of fetuses with CHD7 mutations, now extended to 40 cases. CHARGE syndrome is increasingly diagnosed antenatally, but remains challenging in many instances. METHOD: Here we report a retrospective study of 40 cases of CHARGE syndrome with a CHD7 mutation, including 10 previously reported fetuses, in which fetal or neonatal clinical, radiological and histopathological examinations were performed. RESULTS: Conversely to postnatal studies, the proportion of males is high in our series (male to female ratio 2.6:1) suggesting a greater severity in males. Features almost constant in fetuses were external ear anomalies, arhinencephaly and semicircular canal agenesis, while intrauterine growth retardation was never observed. Finally, except for one, all other mutations identified in our antenatal series were truncating, suggesting a possible phenotype-genotype correlation. CONCLUSIONS: Clinical analysis allowed us to refine the clinical description of CHARGE syndrome in fetuses, describe some novel features and set up diagnostic criteria in order to help the diagnosis of CHARGE syndrome after termination of pregnancies following the detection of severe malformations.


Subject(s)
CHARGE Syndrome , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Mutation , Abnormalities, Multiple/genetics , Adult , CHARGE Syndrome/diagnosis , CHARGE Syndrome/genetics , CHARGE Syndrome/physiopathology , Child , Female , Fetus , Humans , Male , Phenotype , Pregnancy , Pregnancy Complications , Retrospective Studies
19.
Am J Hum Genet ; 91(2): 372-8, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22883145

ABSTRACT

Orofaciodigital syndromes (OFDSs) consist of a group of heterogeneous disorders characterized by abnormalities in the oral cavity, face, and digits and associated phenotypic abnormalities that lead to the delineation of 13 OFDS subtypes. Here, by a combined approach of homozygozity mapping and exome ciliary sequencing, we identified truncating TCTN3 mutations as the cause of an extreme form of OFD associated with bone dysplasia, tibial defect, cystic kidneys, and brain anomalies (OFD IV, Mohr-Majewski syndrome). Analysis of 184 individuals with various ciliopathies (OFD, Meckel, Joubert, and short rib polydactyly syndromes) led us to identify four additional truncating TCTN3 mutations in unrelated fetal cases with overlapping Meckel and OFD IV syndromes and one homozygous missense mutation in a family with Joubert syndrome. By exploring roles of TCTN3 in human ciliary related functions, we found that TCTN3 is necessary for transduction of the sonic hedgehog (SHH) signaling pathway, as revealed by abnormal processing of GLI3 in patient cells. These results are consistent with the suggested role of its murine ortholog, which forms a complex at the ciliary transition zone with TCTN1 and TCTN2, both of which are also implicated in the transduction of SHH signaling. Overall, our data show the involvement of the transition zone protein TCTN3 in the regulation of the key SHH signaling pathway and that its disruption causes a severe form of ciliopathy, combining features of Meckel and OFD IV syndromes.


Subject(s)
Cleft Palate/genetics , Foot Deformities, Congenital/genetics , Hand Deformities, Congenital/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Orofaciodigital Syndromes/genetics , Phenotype , Adaptor Proteins, Signal Transducing , Adolescent , Apoptosis Regulatory Proteins , Base Sequence , Cerebellum/abnormalities , Cerebellum/pathology , Child , Cleft Palate/pathology , Exome/genetics , Fetus/pathology , Foot Deformities, Congenital/pathology , Hand Deformities, Congenital/pathology , Hedgehog Proteins/metabolism , Homozygote , Humans , Molecular Sequence Data , Mutation/genetics , Orofaciodigital Syndromes/pathology , Sequence Analysis, DNA , Signal Transduction/genetics , Young Adult
20.
Ann Pathol ; 32(3): 217-9, 2012 Jun.
Article in French | MEDLINE | ID: mdl-22748341

ABSTRACT

Tamponade is a rare but particularly serious complication of central venous catheters in the newborn. Tamponade can be due to the endocardic aggression caused by the continuous flow of a hyperosmotic solution or by a mechanical injury that can result in perforation of the atrial wall. The risk of tamponade is present whatever is the position of the tip of the catheter, although it has been shown that this risk is increased when this tip is in the right auricle. The originality of our observation is the discovery at the post-mortem examination of an anterior interventricular vein thrombosis, without any lesion of the atrial wall. In the event of the diagnosis of tamponade in living newborn, this etiology must be required because of its therapeutic implications.


Subject(s)
Cardiac Tamponade/etiology , Cardiac Tamponade/pathology , Catheterization, Central Venous/adverse effects , Diseases in Twins/etiology , Diseases in Twins/pathology , Venous Thrombosis/etiology , Venous Thrombosis/pathology , Fatal Outcome , Female , Heart Ventricles , Humans , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL
...