Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Evolution ; 78(2): 300-314, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37962379

ABSTRACT

Widely distributed plants of western North America experience divergent selection across environmental gradients, have complex histories shaped by biogeographic barriers and distributional shifts and often illustrate continuums of reproductive isolation. Rubber rabbitbrush (Ericameria nauseosa) is a foundational shrub species that occurs across diverse environments of western North America. Its remarkable phenotypic diversity is currently ascribed to two subspecies-Ericameria nauseosa nauseosa and Ericameria nauseosa consimilis-and 22 named varieties. To understand how genetic variation is partitioned across subspecies, varieties, and environments, we used high throughput sequencing of reduced representation libraries. We found clear evidence for divergence between the two subspecies, despite largely sympatric distributions. Numerous locations exhibiting admixed ancestry were not geographically localized but were widely distributed across a mosaic hybrid zone. The occurrence of hybrid and subspecific ancestries was strongly predicted by environmental variables as well as the proximity to major ecotones between ecoregions. Although this repeatability illustrates the importance of environmental factors in shaping reproductive isolation, variability in the prevalence of hybridization also indicates these factors likely differ across ecological contexts. There was mixed evidence for the evolutionary cohesiveness of varieties, but several genetically distinct and narrow endemic varieties exhibited admixed subspecific ancestries, hinting at the possibility for transgressive hybridization to contribute to phenotypic novelty and the colonization of new environments in E. nauseosa.


Subject(s)
Reproductive Isolation , Rubber , Biological Evolution , North America , Hybridization, Genetic
2.
Ecol Appl ; 33(6): e2897, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37305925

ABSTRACT

Forest persistence in regions impacted by increasing water and temperature stress will depend upon species' ability to either rapidly adjust to novel conditions or migrate to track ecological niches. Predicted, rapid climate change is likely to outpace the adaptive and migratory capacity of long-lived isolated tree species, and reforestation may be critical to species' persistence. Facilitating persistence both within and beyond a species' range requires identification of seed lots best adapted to the current and future conditions predicted with rapid climate change. We evaluate variation in emergent seedling performance that leads to differential survival among species and populations for three high elevation five-needle pines. We paired a fully reciprocal field common garden experiment with a greenhouse common garden study to (1) quantify variation in seedling emergence and functional traits, (2) ask how functional traits affect performance under different establishment conditions, and (3) evaluate whether trait and performance variation demonstrates local adaptation and plasticity. Among study species-limber, Great Basin bristlecone, and whitebark pines-we found divergence in emergence and functional traits, though soil moisture was the strongest driver of seedling emergence and abundance across all species. Generalist limber pine had a clear emergence advantage as well as traits associated with drought adaptation, while edaphic specialist bristlecone pine was characterized by low emergence yet high early survival once established. Despite evidence for edaphic specialization, soil characteristics alone did not explain bristlecone success. Across species, trait-environment relationships provided some evidence for local adaptation in drought-adapted traits, but we found no evidence of local adaptation in emergence or survival at this early life stage. For managers looking to promote persistence, sourcing seed from drier environments is likely to impart greater drought resistance into reforestation efforts through strategies such as greater root investment, increasing the probability of early seedling survival. This research demonstrates, through a rigorous reciprocal transplant experimental design, that it may be possible to select climate- and soil-appropriate seed sources for reforestation. However, planting success will ultimately rely on a suitable establishment environment, requiring careful consideration of interannual climate variability for management interventions in these climate and disturbance-impacted tree species.

3.
Ecology ; 104(7): e4100, 2023 07.
Article in English | MEDLINE | ID: mdl-37165924

ABSTRACT

A history of species co-occurrence in plant communities is hypothesized to lead to greater niche differentiation, more efficient resource partitioning, and more productive, resistant communities as a result of evolution in response to biotic interactions. A similar question can be asked of co-occurring populations: do individual species or community responses differ when communities are founded with plants sharing a history of population co-occurrence (sympatric) or originating from different locations (allopatric)? Using shrub, grass, and forb species from six locations in the western Great Basin, North America, we compared establishment, productivity, reproduction, phenology, and resistance to invaders for experimental communities with either sympatric or allopatric population associations. Each community type was planted with six taxa in outdoor mesocosms, measured over three growing seasons, and invaded with the annual grass Bromus tectorum in the final season. For most populations, the allopatric or sympatric status of neighbors was not important. However, in some cases, it was beneficial for some species from some locations to be planted with allopatric neighbors, while others benefited from sympatric neighbors, and some of these responses had large effects. For instance, the Elymus population that benefited the most from allopatry grew 50% larger with allopatric neighbors than in single origin mesocosms. This response affected invasion resistance, as B. tectorum biomass was strongly affected by productivity and phenology of Elymus spp., as well as Poa secunda. Our results demonstrate that, while community composition can affect plant performance in semi-arid plant communities, assembling communities from sympatric populations is not sufficient to ensure high productivity and invasion resistance. Instead, we observed an idiosyncratic interaction between sampling effects and evolutionary history, with the potential for seed source of individual populations to have community-level effects.


Subject(s)
Plants , Poaceae , Bromus , Biomass , North America , Ecosystem
4.
Ecol Evol ; 12(5): e8870, 2022 May.
Article in English | MEDLINE | ID: mdl-35509617

ABSTRACT

Trait-environment correlations can arise from local adaptation and can identify genetically and environmentally appropriate seeds for restoration projects. However, anthropogenic changes can disrupt the relationships between traits and fitness. Finding the best seed sources for restoration may rely on describing plant traits adaptive in disturbed and invaded environments, recognizing that while traits may differ among species and functional groups, there may be similarities in the strategies that increase seedling establishment. Focusing on three grass genera, two shrub species, and two forb genera, we collected seeds of all taxa from 16 common sites in the sagebrush steppe of the western United States. We measured seed and seedling characteristics, including seed size, emergence timing, and root and shoot traits, and compiled a suite of environmental variables for each collection site. We described trait-environment associations and asked how traits or environment of origin were associated with seedling survival in invaded gardens. Sampling seven taxa from the same sites allowed us to ask how trait-environment-performance associations differ among taxa and whether natural selection favors similar traits across multiple taxa and functional groups. All taxa showed trait-environment associations consistent with local adaptation, and both environment of origin and phenotypes predicted survival in competitive restoration settings, with some commonalities among taxa. Notably, rapid emergence and larger seeds increased survival for multiple taxa. Environmental factors at collection sites, including lower slopes (especially for grasses), greater mean annual temperatures (especially for shrubs and forbs), and greater precipitation seasonality were frequently associated with increased survival. We noted one collection site with high seedling survival across all seven taxa, suggesting that conditions within some sites may result in selection for traits that increase establishment for multiple species. Thus, choosing native plant sources with the most adaptive traits, along with matching climates, will likely improve the restoration of invaded communities.

5.
Evol Appl ; 14(12): 2881-2900, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34950235

ABSTRACT

The spatial structure of genomic and phenotypic variation across populations reflects historical and demographic processes as well as evolution via natural selection. Characterizing such variation can provide an important perspective for understanding the evolutionary consequences of changing climate and for guiding ecological restoration. While evidence for local adaptation has been traditionally evaluated using phenotypic data, modern methods for generating and analyzing landscape genomic data can directly quantify local adaptation by associating allelic variation with environmental variation. Here, we analyze both genomic and phenotypic variation of rubber rabbitbrush (Ericameria nauseosa), a foundational shrub species of western North America. To quantify landscape genomic structure and provide perspective on patterns of local adaptation, we generated reduced representation sequencing data for 17 wild populations (222 individuals; 38,615 loci) spanning a range of environmental conditions. Population genetic analyses illustrated pronounced landscape genomic structure jointly shaped by geography and environment. Genetic-environment association (GEA) analyses using both redundancy analysis (RDA) and a machine-learning approach (Gradient Forest) indicated environmental variables (precipitation seasonality, slope, aspect, elevation, and annual precipitation) influenced spatial genomic structure and were correlated with allele frequency shifts indicative of local adaptation at a consistent set of genomic regions. We compared our GEA-based inference of local adaptation with phenotypic data collected by growing seeds from each population in a greenhouse common garden. Population differentiation in seed weight, emergence, and seedling traits was associated with environmental variables (e.g., precipitation seasonality) that were also implicated in GEA analyses, suggesting complementary conclusions about the drivers of local adaptation across different methods and data sources. Our results provide a baseline understanding of spatial genomic structure for E. nauseosa across the western Great Basin and illustrate the utility of GEA analyses for detecting the environmental causes and genetic signatures of local adaptation in a widely distributed plant species of restoration significance.

7.
Nat Ecol Evol ; 5(9): 1283-1290, 2021 09.
Article in English | MEDLINE | ID: mdl-34294898

ABSTRACT

Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.


Subject(s)
Ecosystem , Seedlings , Climate Change , Humans , Plants , Seeds
8.
J Environ Manage ; 288: 112417, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33765575

ABSTRACT

Exotic annual grasses dominate millions of hectares and increase fire frequency in the sagebrush ecosystem of North America. This devastating invasion is so costly and challenging to revegetate with perennial vegetation that restoration efforts need to be prioritized and strategically implemented. Management needs to break the annual grass-fire cycle and prevent invasion of new areas, while research is needed to improve restoration success. Under current land management and climate regimes, extensive areas will remain annual grasslands, because of their expansiveness and the low probability of transition to perennial dominance. We propose referring to these communities as Intermountain West Annual Grasslands, recognizing that they are a stable state and require different management goals and objectives than perennial-dominated systems. We need to learn to live with annual grasslands, reducing their costs and increasing benefits derived from them, at the same time maintaining landscape-level plant diversity that could allow transition to perennial dominance under future scenarios. To accomplish this task, we propose a framework and research to improve our ability to live with exotic annual grasses in the sagebrush biome.


Subject(s)
Artemisia , Fires , Ecosystem , North America , Poaceae
9.
Evol Appl ; 14(2): 524-535, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33664792

ABSTRACT

Understanding local adaptation to climate is critical for managing ecosystems in the face of climate change. While there have been many provenance studies in trees, less is known about local adaptation in herbaceous species, including the perennial grasses that dominate arid and semiarid rangeland ecosystems. We used a common garden study to quantify variation in growth and drought resistance traits in 99 populations of Elymus elymoides from a broad geographic and climatic range in the western United States. Ecotypes from drier sites produced less biomass and smaller seeds, and had traits associated with greater drought resistance: small leaves with low osmotic potential and high integrated water use efficiency (δ13C). Seasonality also influenced plant traits. Plants from regions with relatively warm, wet summers had large seeds, large leaves, and low δ13C. Irrespective of climate, we also observed trade-offs between biomass production and drought resistance traits. Together, these results suggest that much of the phenotypic variation among E. elymoides ecotypes represents local adaptation to differences in the amount and timing of water availability. In addition, ecotypes that grow rapidly may be less able to persist under dry conditions. Land managers may be able to use this variation to improve restoration success by seeding ecotypes with multiple drought resistance traits in areas with lower precipitation. The future success of this common rangeland species will likely depend on the use of tools such as seed transfer zones to match local variation in growth and drought resistance to predicted climatic conditions.

10.
Am J Bot ; 107(12): 1663-1676, 2020 12.
Article in English | MEDLINE | ID: mdl-33306244

ABSTRACT

PREMISE: Understanding edaphic specialization is crucial for conserving rare plants that may need relocation due to habitat loss. Focusing on Eriogonum crosbyae, a rare soil specialist in the Great Basin of the United States, we asked how site-level variation among volcanic soil outcrops affected plant growth and population distribution. METHODS: We measured emergence, survival, size, and biomass allocation of E. crosbyae seedlings planted in soils collected from 42 outcrops of actual and potential habitat. We also measured phenotypic variation in the wild, documented abiotic and biotic components of E. crosbyae habitat, re-surveyed Nevada populations, and evaluated occupancy changes over time. RESULTS: Plants responded plastically to edaphic variation, growing larger and allocating relatively more to aboveground tissues in soils with greater nutrient availability and growing smaller in soils higher in copper in the field and the greenhouse. However, the chemical and physical soil properties we measured did not predict site occupancy, nor was plant phenotype in the greenhouse different when plants were grown in soils from sites with different occupation status. We observed occupation status reversals at five locations. CONCLUSIONS: Eriogonum crosbyae performed well in soils formed on hydrothermally altered rocks that are inhospitable to many other plants. Extirpation/colonization events observed were consistent with metapopulation dynamics, which may partially explain the patchy distribution of E. crosbyae among outcrops of potential habitat. While soil properties did not predict site occupancy, early life stages showed sensitivity to soil variation, indicating that seedling dynamics may be important to consider for the conservation of this soil specialist.


Subject(s)
Eriogonum , Soil , Ecosystem , Nevada , Seedlings
11.
Ecol Evol ; 9(11): 6259-6275, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31236219

ABSTRACT

Variation in natural selection across heterogeneous landscapes often produces (a) among-population differences in phenotypic traits, (b) trait-by-environment associations, and (c) higher fitness of local populations. Using a broad literature review of common garden studies published between 1941 and 2017, we documented the commonness of these three signatures in plants native to North America's Great Basin, an area of extensive restoration and revegetation efforts, and asked which traits and environmental variables were involved. We also asked, independent of geographic distance, whether populations from more similar environments had more similar traits. From 327 experiments testing 121 taxa in 170 studies, we found 95.1% of 305 experiments reported among-population differences, and 81.4% of 161 experiments reported trait-by-environment associations. Locals showed greater survival in 67% of 24 reciprocal experiments that reported survival, and higher fitness in 90% of 10 reciprocal experiments that reported reproductive output. A meta-analysis on a subset of studies found that variation in eight commonly measured traits was associated with mean annual precipitation and mean annual temperature at the source location, with notably strong relationships for flowering phenology, leaf size, and survival, among others. Although the Great Basin is sometimes perceived as a region of homogeneous ecosystems, our results demonstrate widespread habitat-related population differentiation and local adaptation. Locally sourced plants likely harbor adaptations at rates and magnitudes that are immediately relevant to restoration success, and our results suggest that certain key traits and environmental variables should be prioritized in future assessments of plants in this region.

12.
J Environ Manage ; 242: 315-326, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31054396

ABSTRACT

Expansion of native pinyon-juniper (Pinus monophylla-Juniperus osteosperma) woodlands can decrease shrub and herbaceous cover in the Intermountain West, U.S., affecting habitat quality and biodiversity. Removing pinyon-juniper woodlands in former sagebrush ecosystems to increase understory cover has a long management history, and short- and long-term monitoring reveal different understory plant community responses. We revisited a 500 mm average precipitation site in the sagebrush steppe of western Nevada, 32 years after three types of tree thinning treatments and seeding had occurred in a mature, closed-canopy woodland. We measured vegetation foliar cover and density within plots arranged in a 3-block randomized design. We found significantly lower cover of P. monophylla in treated plots (average of 2-8%), relative to controls (32%). However, P. monophylla seedlings (<0.5 m tall) were detected throughout all plots (average of 86-160 trees/ha in treated plots, 111 in controls). Cover of perennial graminoids and shrubs was higher in all treatments (600-870% higher grass cover and 470-570% higher shrub cover) than controls. Cover of invasive annual species, primarily Bromus tectorum, was highly variable and not significantly different among plots, but B. tectorum had the highest cover of all species in two of the three woodland removal treatment types. Control plots contained significantly larger perennial canopy gaps compared to all treatments (average of 318 cm vs. 104-133 cm), and had significantly more woody litter cover than clear cut plots (average of 14% vs. 3%). These results suggest tree thinning and removal in tree dominated woodlands can increase shrub and perennial grass cover and reduce litter and canopy gaps, especially in conjunction with seeding, but that tree recolonization over the long-term is inevitable. Perennial forbs did not respond well to treatments (<1% average foliar cover in all plots), and seeding or other treatments may be needed to improve their response. Further, if tree seedlings survive, these plots will likely return to tree dominance without additional treatments.


Subject(s)
Juniperus , Ecosystem , Forests , Nevada , Trees
13.
PLoS One ; 13(10): e0205760, 2018.
Article in English | MEDLINE | ID: mdl-30335842

ABSTRACT

Restoration of agricultural fields is challenging, especially in arid and semi-arid ecosystems. We conducted experiments in two fields in the Great Basin, USA, which differed in cultivation history and fertility. We tested the effects of different levels of functional diversity (planting grasses and shrubs together, vs. planting shrubs alone), seed source (cultivars, local or distant wild-collections), and irrigation regime (spring or fall and spring) on restoration outcomes. We sowed either: 1) grasses and shrubs in year one, 2) shrubs only, in year one, 3) grasses in year one with herbicide, shrubs in year two, or 4) shrubs alone in year two, after a year of herbicide. We irrigated for two years and monitored for three years. Shrub emergence was highest in the lower fertility field, where increasing functional diversity by seeding grasses had a neutral or facilitative effect on shrub emergence. In the higher fertility field, increasing functional diversity appeared to have a neutral to competitive effect. After declines in shrub densities after irrigation ceased, these effects did not persist. Grasses initially suppressed or had a neutral effect on weeds relative to an unseeded control, but had neutral or facilitative effects on weeds relative to shrub-only seeding. Initially, commercial grasses were either equivalent to or outperformed wild-collected grasses, but after irrigation ceased, commercial grasses were outperformed by wild-collected grasses in the higher fertility field. Local shrubs initially outperformed distant shrubs, but this effect did not persist. Fall and spring irrigation combined with local shrubs and wild-collected grasses was the most successful strategy in the higher fertility field, while in the lower fertility field, irrigation timing had fewer effects. Superior shrub emergence and higher grass persistence indicated that the use of wild and local seed sources is generally warranted, whereas the effects of functional diversity and irrigation regime were context-dependent. A bet-hedging approach that uses a variety of strategies may maximize the chances of restoration success.


Subject(s)
Agriculture/methods , Environmental Restoration and Remediation/methods , Poaceae/physiology , Seeds/physiology , Biodiversity , Fertility , Herbicides/administration & dosage , Plant Weeds/drug effects , Plant Weeds/physiology , Seasons , Soil/chemistry , United States
14.
Ecol Evol ; 8(24): 12533-12546, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619563

ABSTRACT

Many drylands have been converted from perennial-dominated ecosystems to invaded, annual-dominated, fire-prone systems. Innovative approaches are needed to disrupt fire-invasion feedbacks. Targeted grazing can reduce invasive plant abundance and associated flammable fuels, and fuelbreaks can limit fire spread. Restored strips of native plants (native greenstrips) can function as fuelbreaks while also providing forage and habitat benefits. However, methods for establishing native greenstrips in invaded drylands are poorly developed. Moreover, if fuels reduction and greenstrip establishment are to proceed simultaneously, it is critical to understand how targeted grazing interacts with plant establishment. We determined how targeted grazing treatments interacted with seed rate, spatial planting arrangement (mixtures vs. monoculture strips), seed coating technology, and species identity (five native grasses) to affect standing biomass and seeded plant density in experimental greenstrips. We monitored for two growing seasons to document effects during the seedling establishment phase. Across planting treatments, ungrazed paddocks had the highest second-year seeded plant densities and the highest standing biomass. Paddocks grazed in fall of the second growing season had fewer seedlings than paddocks grazed in spring, five months later. High seed rates minimized negative effects of grazing on plant establishment. Among seeded species, Elymus trachycaulus and Poa secunda had the highest second-year densities, but achieved this via different pathways. Elymus trachycaulus produced the most first-year seedlings, but declined in response to grazing, whereas P. secunda had moderate first-year establishment but high survival across grazing treatments. We identified clear tradeoffs between reducing fuel loads and establishing native plants in invaded sagebrush steppe; similar tradeoffs may exist in other invaded drylands. In our system, tradeoffs were minimized by boosting seed rates, using grazing-tolerant species, and delaying grazing. In invaded ecosystems, combining targeted grazing with high-input restoration may create opportunities to limit wildfire risk while also shifting vegetation toward more desirable species.

15.
Oecologia ; 185(3): 437-452, 2017 11.
Article in English | MEDLINE | ID: mdl-28936643

ABSTRACT

Spatial and temporal environmental variability can lead to variation in selection pressures across a landscape. Strategies for coping with environmental heterogeneity range from specialized phenotypic responses to a narrow range of conditions to generalist strategies that function under a range of conditions. Here, we ask how mean climate and climate variation at individual sites and across a species' range affect the specialist-generalist spectrum of germination strategies exhibited by 10 arid land forbs. We investigated these relationships using climate data for the western United States, occurrence records from herbaria, and germination trials with field-collected seeds, and predicted that generalist strategies would be most common in species that experience a high degree of climate variation or occur over a wide range of conditions. We used two metrics to describe variation in germination strategies: (a) selectivity (did seeds require specific cues to germinate?) and (b) population-level variation (did populations differ in their responses to germination cues?) in germination displayed by each species. Species exhibited distinct germination strategies, with some species demonstrating as much among-population variation as we observed among species. Modeling efforts suggested that generalist strategies evolve in response to higher spatial variation in actual evapotranspiration at a local scale and in available water in the spring and annual precipitation at a range-wide scale. Describing the conditions that lead to variation in early life-history traits is important for understanding the evolution of diversity in natural systems, as well as the possible responses of individual species to global climate change.


Subject(s)
Climate Change , Embryophyta/growth & development , Germination/physiology , Plant Dormancy/physiology , Seasons , Seeds/physiology
16.
Appl Plant Sci ; 4(11)2016 Nov.
Article in English | MEDLINE | ID: mdl-27843723

ABSTRACT

PREMISE OF THE STUDY: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the mechanisms behind its successful invasion. METHODS AND RESULTS: Normalized cDNA libraries from six diverse B. tectorum individuals were pooled and sequenced using 454 sequencing. Ninety-five SNP assays were developed for use on 96.96 arrays with the Fluidigm EP1 genotyping platform. Verification of the 95 SNPs by genotyping 251 individuals from 12 populations is reported, along with amplification data from four related Bromus species. CONCLUSIONS: These SNP markers are polymorphic across populations of B. tectorum, are optimized for high-throughput applications, and may be applicable to other, related Bromus species.

17.
Contact Dermatitis ; 73(2): 91-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26016445

ABSTRACT

BACKGROUND: Although permanent tattoos are becoming increasingly commonplace, there is a paucity of epidemiological data on adverse tattoo reactions. Several European studies have indicated that tattoo reactions may be relatively common, although the extent of this phenomenon in the United States is largely unknown. OBJECTIVES: To provide insights into the prevalence and nature of adverse tattoo reactions. PATIENTS/MATERIALS/METHODS: We administered a survey about adverse tattoo reactions to 300 randomly selected tattooed people in Central Park, New York City. RESULTS: Of 300 participants, 31 (10.3%) reported experiencing an adverse tattoo reaction, 13 (4.3%) reported acute reactions, and 18 (6.0%) suffered from a chronic reaction involving a specific colour lasting for >4 months. Forty-four per cent of colour-specific reactions were to red ink, which was only slightly higher than the frequency of red ink in the sampled population (36%). Twenty-five per cent of chronic reactions were to black ink, which was less than expected based on the number of respondents with black tattoos (90.3%). Study participants with chronic, colour-specific reactions had more tattoo colours than those without reactions. CONCLUSIONS: This study shows that tattoo reactions are relatively common, and that further investigation into the underlying causes is merited.


Subject(s)
Dermatitis, Allergic Contact/epidemiology , Ink , Tattooing/adverse effects , Adolescent , Adult , Aged , Dermatitis, Allergic Contact/etiology , Female , Humans , Male , Middle Aged , New York City/epidemiology , Prevalence , Self Report , Young Adult
18.
Am J Bot ; 102(1): 73-84, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25587150

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: The ability to respond to environmental change via phenotypic plasticity may be important for plants experiencing disturbances such as climate change and plant invasion. Responding to belowground competition through root plasticity may allow native plants to persist in highly invaded systems such as the cold deserts of the Intermountain West, USA.• METHODS: We investigated whether Poa secunda, a native bunchgrass, could alter root morphology in response to nutrient availability and the presence of a competitive annual grass. Seeds from 20 families were grown with high and low nutrients and harvested after 50 d, and seeds from 48 families, grown with and without Bromus tectorum, were harvested after ∼2 or 6 mo. We measured total biomass, root mass fraction, specific root length (SRL), root tips, allocation to roots of varying diameter, and plasticity in allocation.• KEY RESULTS: Plants had many parallel responses to low nutrients and competition, including increased root tip production, a trait associated with tolerance to reduced resources, though families differed in almost every trait and correlations among trait changes varied among experiments, indicating flexibility in plant responses. Seedlings actively increased SRL and fine root allocation under competition, while older seedlings also increased coarse root allocation, a trait associated with increased tolerance, and increased root mass fraction.• CONCLUSIONS: The high degree of genetic variation for root plasticity within natural populations could aid in the long-term persistence of P. secunda because phenotypic plasticity may allow native species to persist in invaded and fluctuating resource environments.


Subject(s)
Bromus/physiology , Introduced Species , Poa/physiology , Adaptation, Physiological , Bromus/growth & development , Nevada , Plant Roots/growth & development , Plant Roots/physiology , Poa/growth & development , Seedlings/growth & development , Seedlings/physiology
19.
Dermatol Surg ; 40(9): 1028-37, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25099296

ABSTRACT

BACKGROUND: Clinical photography enhances medical care, research, and teaching. Empirical data are needed to guide best practices regarding dermatologic photography. OBJECTIVE: To investigate patient opinion about clinical photography and identify demographic factors that influence these opinions. METHODS AND MATERIALS: Four hundred patients representing a broad range of ages, self-identified ethnic/racial groups, and socioeconomic levels were recruited from 4 dermatology settings in New York City. Patients were administered a survey about perceptions of photography, willingness to allow photographs to be used in a variety of settings, preferences for photographer and photographic equipment, and methods of consent. RESULTS: Eighty-eight percent of patients agreed that photography enhanced their quality of care. Most patients would allow their photographs to be used for medical, teaching, and research purposes with significantly more acceptance when patients were not identifiable. Patients preferred photographs taken by a physician rather than a nurse or student, photographers of the same gender, clinic-owned cameras to personal cameras or cell phones, and written consent to verbal consent. There were significant racial/ethnicity and age-related variations in responses, with white and older patients being more permissive than other groups. CONCLUSION: We use the results of this study to recommend best practices for photography in dermatology.


Subject(s)
Dermatology , Patient Preference , Photography/standards , Adolescent , Adult , Black or African American , Asian , Biomedical Research , Confidentiality , Dermatology/education , Female , Health Care Surveys , Hispanic or Latino , Humans , Income , Informed Consent , Male , Middle Aged , Patient Preference/ethnology , Photography/instrumentation , Photography/methods , Privacy , Sex Factors , White People , Young Adult
20.
Evol Appl ; 6(3): 510-23, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23745142

ABSTRACT

RESTORATION IS AN OPPORTUNITY TO STUDY NATURAL SELECTION: One can measure the distribution of traits in source propagules used to found populations, compare this with the distribution of traits in successful recruits, and determine the strength and direction of selection on potentially adaptive traits. We investigated whether natural selection influenced seedling establishment during postfire restoration in the Great Basin, an area where large-scale restoration occurs with a few widely available cultivars planted over a large range of environmental conditions. We collected seeds from established plants of the perennial grass Elymus elymoides ssp. californicus (squirreltail) at two restoration sites and compared the distribution of phenotypic traits of surviving plants with the original pool of restoration seeds. Seeds were planted in common gardens for two generations. Plants grown from seeds that established in the field were a nonrandom subset of the original seeds, with directional selection consistently favoring a correlated suite of traits in both field sites: small plant and seed size, and earlier flowering phenology. These results demonstrate that natural selection can affect restoration establishment in strong and predictable ways and that adaptive traits in these sites were opposite of the current criteria used for selection of restoration material in this system.

SELECTION OF CITATIONS
SEARCH DETAIL
...