Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Forensic Sci ; 69(2): 640-650, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38173363

ABSTRACT

The enzyme α-amylase has long been a commonly targeted protein in serological tests for saliva. While being especially abundant in saliva, α-amylase is detectable in vaginal secretions, sweat, fecal matter, breast milk and other matrices. As a result, assays for α-amylase only provide a presumptive indication of saliva. The availability of mass spectrometry-based tools for the detection of less abundant, but more specific, protein targets (e.g., human statherin) has enabled the development of high confidence assays for human saliva. Sample throughput, however, has traditionally been low due to multi-step workflows for protein extraction, quantitation, enzymatic digestion, solid phase cleanup, and nano-/capillary-based chromatography. Here, we present two novel "direct" single-stage extraction strategies for sample preparation. These feature immunoaffinity purification and reversed-phase solid-phase microextraction in conjunction with intact mass analysis of human statherin for saliva identification. Mass analysis was performed on the Thermo Scientific Q-Exactive™ Orbitrap mass spectrometer with a 10-min analytical run time. Data analysis was performed using Byos® from Protein Metrics. Two sample sets were analyzed with a population of 20 individuals to evaluate detection reliability. A series of casework-type samples were then assayed to evaluate performance in an authentic forensic context. Statherin was confidently identified in 92% and 71% of samples extracted using the immunoaffinity purification and solid phase microextraction approaches, respectively. Overall, immunoaffinity purification outperformed the solid phase microextraction, especially with complex mixtures. In toto, robotic extraction and intact mass spectrometry enable the reliable identification of trace human saliva in a variety of sample types.


Subject(s)
Body Fluids , Saliva , Female , Humans , Saliva/chemistry , Reproducibility of Results , Mass Spectrometry/methods , Proteins/analysis , alpha-Amylases/analysis , Solid Phase Microextraction/methods
2.
J Forensic Sci ; 67(3): 1184-1190, 2022 May.
Article in English | MEDLINE | ID: mdl-35023573

ABSTRACT

The identification of semen during a criminal investigation may be a critical component in the prosecution of a sexual assault. Commonly employed enzymatic and affinity-based methods for detection lack specificity, are time-consuming, and only provide a presumptive indication that semen is present where microscopic visualization is unable to meet the throughput demands. Contrary to traditional approaches, protein mass spectrometry provides true confirmatory results, but multiday sample preparation and nanoflow sample separation requirements have limited the practical applicability of these approaches. Aiming at streamlining sexual assault screening by mass spectrometry, the work here coupled a 60-minute rapid tryptic digestion, semenogelin-II peptide affinity purification on an Agilent AssayMap Bravo automation platform, and a 3-minute targeted LC-MS/MS method on an Agilent 6495 triple quadrupole mass spectrometer operating in multiple reaction monitoring mode for detecting semenogelin-II peptides in sexual assault samples. The developed assay was assessed using casework-type samples and was successful in detecting trace levels (0.0001 µl) of semen recovered from both cotton and vaginal swabs, as well as semen recovered from vaginal swabs during menses or adulterated with personal lubricants. This work represents a promising technique for high-throughput seminal fluid identification in sexual assault-type samples by mass spectrometry.


Subject(s)
Body Fluids , Tandem Mass Spectrometry , Chromatography, Liquid , Female , Humans , Peptides , Proteins
3.
J Proteome Res ; 20(10): 4655-4666, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34491751

ABSTRACT

Protein is a major component of all biological evidence. Proteomic genotyping is the use of genetically variant peptides (GVPs) that contain single-amino-acid polymorphisms to infer the genotype of matching nonsynonymous single-nucleotide polymorphisms for the individual from whom the protein sample originated. This can be used to statistically associate an individual to evidence found at a crime scene. The utility of the inferred genotype increases as the detection of GVPs increases, which is the direct result of technology transfer to mass spectrometry platforms typically available. Digests of single (2 cm) human hair shafts from three European and two African subjects were analyzed using data-dependent acquisition on a Q-Exactive Plus Hybrid Quadrupole-Orbitrap system, data-independent acquisition and a variant of parallel reaction monitoring (PRM) on an Orbitrap Fusion Lumos Tribrid system, and multiple reaction monitoring (MRM) on an Agilent 6495 triple quadrupole system. In our hands, average GVP detection from a selected panel of 24 GVPs increased from 6.5 ± 1.1 and 3.1 ± 0.8 using data-dependent and -independent acquisition to 9.5 ± 0.7 and 11.7 ± 1.7 using PRM and MRM (p < 0.05), respectively. PRM resulted in a 1.3-fold increase in detection sensitivity, and MRM resulted in a 1.6-fold increase in detection sensitivity. This increase in biomarker detection has a functional impact on the statistical association of a protein sample and an individual. Increased biomarker sensitivity, using Markov Chain Monte Carlo modeling, produced a median-estimated random match probability of over 1 in 10 trillion from a single hair using targeted proteomics. For PRM and MRM, detected GVPs were validated by the inclusion of stable isotope-labeled peptides in each sample, which served also as a detection trigger. This research accomplishes two aims: the demonstration of utility for alternative analytical platforms in proteomic genotyping and the establishment of validation methods for the evaluation of inferred genotypes.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, Liquid , Genotype , Humans , Proteins/genetics
4.
Forensic Sci Int ; 326: 110908, 2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34311288

ABSTRACT

The aim of this study was to validate a multiplex proteomic assay for the identification of high-specificity protein biomarkers by multiple reaction monitoring mass spectrometry on a triple quadrupole mass spectrometer for the accurate, reliable, and confirmatory identification of bodily fluids commonly encountered in a forensic context. This includes the identification of peripheral blood, semen, saliva, urine, and vaginal/menstrual fluid. The assay is able to efficiently identify pure or mixed stains through the identification of target peptide fragments originating from tissue-specific proteins including: uromodulin from urine; prostatic acid phosphatase, prostate specific antigen and semenogelin-II for semen; statherin, submaxillary gland androgen-regulated protein 3B and amylase for saliva; cornulin, martrigel-induced gene C4 protein, suprabasin and neutrophil gelatinase-associated lipocalin for vaginal/menstrual fluid; and alpha-1 antitrypsin, hemopexin, and hemoglobin subunit beta for peripheral blood. Based on the results of the developmental validation studies which included an assessment of reproducibility and repeatability, sensitivity, species specificity, carryover, mixtures, as well as a series of casework type samples. Only a small selection of case samples was unable to unambiguously identify the target fluid including urine recovered from substrates as well as semen when mixed with personal lubricants. Overall, the mass spectrometry-based workflow offers significant advantages compared to existing serological methods.

5.
Forensic Sci Int Genet ; 54: 102529, 2021 09.
Article in English | MEDLINE | ID: mdl-34139528

ABSTRACT

Protein is a major component of all biological evidence, often the matrix that embeds other biomolecules such as polynucleotides, lipids, carbohydrates, and small molecules. The proteins in a sample reflect the transcriptional and translational program of the originating cell types. Because of this, proteins can be used to identify body fluids and tissues, as well as convey genetic information in the form of single amino acid polymorphisms, the result of non-synonymous SNPs. This review explores the application and potential of forensic proteomics. The historical role that protein analysis played in the development of forensic science is examined. This review details how innovations in proteomic mass spectrometry have addressed many of the historical limitations of forensic protein science, and how the application of forensic proteomics differs from proteomics in the life sciences. Two more developed applications of forensic proteomics are examined in detail: body fluid and tissue identification, and proteomic genotyping. The review then highlights developing areas of proteomics that have the potential to impact forensic science in the near future: fingermark analysis, species identification, peptide toxicology, proteomic sex estimation, and estimation of post-mortem intervals. Finally, the review highlights some of the newer innovations in proteomics that may drive further development of the field. In addition to potential impact, this review also attempts to evaluate the stage of each application in the development, validation and implementation process. This review is targeted at investigators who are interested in learning about proteomics in a forensic context and expanding the amount of information they can extract from biological evidence.


Subject(s)
Proteins , Proteomics , Forensic Medicine , Mass Spectrometry , Peptides
6.
J Forensic Sci ; 66(3): 1017-1023, 2021 May.
Article in English | MEDLINE | ID: mdl-33289932

ABSTRACT

Serological screening of sexual assault evidence has traditionally focused on enzyme activity and immunochromatographic assays that provide only a presumptive indication of seminal fluid and have limited sensitivity relative to DNA testing. Seminal fluid detection based on protein mass spectrometry represents a "Next Gen" serological technology that overcomes the specificity and sensitivity limitations of traditional serological screening but requires time-consuming sample preparation protocols. This paper describes a novel "peptidomics" approach to seminal fluid detection that eliminates the need for lengthy trypsin digestion. This streamlines sample preparation to a one-step process followed by high-resolution mass spectrometry to identify naturally occurring seminal fluid peptides and low-molecular weight proteins. Multiple protein biomarkers of seminal fluid were consistently and confidently identified based on the multiplexed detection of numerous endogenous peptides. These included Semenogelin I and II (90% and 86% sequence coverage, respectively); Prostate Specific Antigen/p30 (29% sequence coverage); and Prostatic Acid Phosphatase (24% sequence coverage). The performance of this streamlined peptidomics approach to seminal fluid identification in a forensic context was also assessed using simulated casework samples of the type typically collected as part of a sexual assault examination (e.g., oral and vaginal swabs stained with semen). The resulting data demonstrate that sub-microliter quantities of seminal fluid on cotton swabs can be recovered and reliably detected. This supports the forensic applicability of a peptidomic assay for seminal fluid identification with same-day sample preparation and analysis. Future development and streamlined multiplex peptidomic assays for additional biological stains can easily be envisaged.


Subject(s)
Mass Spectrometry/methods , Semen/metabolism , Acid Phosphatase/metabolism , Biomarkers/metabolism , Forensic Medicine/methods , Humans , Male , Prostate-Specific Antigen/metabolism , Seminal Vesicle Secretory Proteins/metabolism , Solid Phase Extraction
7.
J Anal Toxicol ; 43(7): 505-511, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-30926990

ABSTRACT

The analysis of biological specimens collected at autopsy for the presence of exogenous insulin(s) is of special interest in select death investigations as they may be suspected in the cause of a death. Technical challenges include the limited stability of insulin, and the forensic requirement of differentiating endogenous insulin from pharmaceutical analogs. A novel method was developed for the detection and quantification of human insulin, Glulisine, Lispro, Aspart, Glargine and Detemir in vitreous fluid. An immunoaffinity extraction procedure is performed followed by separation of the insulin α- and ß-chains. Liquid chromatography tandem mass spectrometry analysis of the ß-chain allows for the unequivocal identification of each insulin analog. The analytical measurement range for each insulin was 0.5-25 ng/mL. The method was evaluated for accuracy, precision, carryover, interferences and stability. Eight vitreous fluid samples collected from cases where untoward insulin use was suspected were subjected to analysis. Positive results were obtained from three samples, and a detailed case history is provided for one of these cases. Even though insulin instability in postmortem biological fluid remains a challenge, this method allows for a reliable forensic-level analysis in vitreous fluid.


Subject(s)
Drug Overdose/diagnosis , Forensic Toxicology/methods , Insulin/analogs & derivatives , Insulin/analysis , Vitreous Body/chemistry , Adult , Female , Forensic Toxicology/instrumentation , Humans , Insulin Aspart , Insulin Glargine , Insulin Lispro , Suicide , Workflow
8.
Electrophoresis ; 38(6): 833-845, 2017 03.
Article in English | MEDLINE | ID: mdl-27943336

ABSTRACT

Advances in proteomics technology over the past decade offer forensic serologists a greatly improved opportunity to accurately characterize the tissue source from which a DNA profile has been developed. Such information can provide critical context to evidence and can help to prioritize downstream DNA analyses. Previous proteome studies compiled panels of "candidate biomarkers" specific to each of five body fluids (i.e., peripheral blood, vaginal/menstrual fluid, seminal fluid, urine, and saliva). Here, a multiplex quadrupole time-of-flight mass spectrometry assay has been developed in order to verify the tissue/body fluid specificity the 23 protein biomarkers that comprise these panels and the consistency with which they can be detected across a sample population of 50 humans. Single-source samples of these human body fluids were accurately identified by the detection of one or more high-specificity biomarkers. Recovery of body fluid samples from a variety of substrates did not impede accurate characterization and, of the potential inhibitors assayed, only chewing tobacco juice appeared to preclude the identification of a target body fluid. Using a series of 2-component mixtures of human body fluids, the multiplex assay accurately identified both components in a single-pass. Only in the case of saliva and peripheral blood did matrix effects appear to impede the detection of salivary proteins.


Subject(s)
Body Fluids/chemistry , Proteins/analysis , Proteome/analysis , Biomarkers/chemistry , Chromatography, High Pressure Liquid , Female , Forensic Medicine , Humans , Male , Mass Spectrometry , Peptides/analysis , RNA, Messenger/analysis
9.
Acad Forensic Pathol ; 6(2): 174-183, 2016 Jun.
Article in English | MEDLINE | ID: mdl-31239889

ABSTRACT

The analysis of biological specimens for the presence of exogenous insulin is of special interest in select postmortem investigations. Insulin analogues are primarily used to mediate the regulation of blood glucose concentrations; however, their use has also been implicated or suspected as a cause of death in suicides, accidents, and homicides. Toxicological analysis for these compounds is challenging due to the large molecular weight, the limited stability of insulin in whole blood, and complexities associated with sample preparation and instrumental testing. As a consequence, determination of insulin in postmortem specimens is not routinely offered by most forensic toxicology laboratories. Forensic death investigation is further complicated by interpretative difficulties such as the frequent absence of anatomical findings, concentration interpretation in known insulin users, and addressing the impact of chemical instability and postmortem redistribution. There are ongoing efforts, however, to develop and validate robust methods that may be used for this analysis on these challenging samples and that are capable of withstanding scientific and legal scrutiny for forensic use. In this regard, in recent years, methods for the detection of exogenous insulin in postmortem samples have been reported and results of this testing has been published in a handful of cases. The purpose of this article is to review the primary functions of insulin, the disease states associated with the therapeutic use of exogenous insulin, the current state of laboratory testing, and to provide case summaries that summarize the timeline of advancements and underscore the importance of this work.

10.
Electrophoresis ; 35(21-22): 3069-78, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25070728

ABSTRACT

DNA profiling has transformed the field of forensic biology by making it possible to individualize biological stains. The identification of the stain itself, however, continues to present forensic serologists with significant challenges. Current antibody- and enzyme activity-based assays yield only presumptive results as detection in nontarget body fluids or cross-reactivity with nonhuman sources have both been well documented. For other critical body fluids such as vaginal and menstrual fluids, there are no commercial tests at all. Using a three-pronged, comparative proteomic strategy based on proteome fractionation by HPLC followed by MS, a panel of 29 candidate protein biomarkers have been proposed as highly specific indicators of human saliva, urine, seminal fluid, vaginal fluid, peripheral blood, and menstrual fluid. The combination of consistent identification by multiple strategies in the current study; confirmation in independently compiled proteomic databases; and information on tissue expression and/or functionality from the proteomic literature all support the proposition that these proteins will have utility as reliable biomarkers of their target body fluids. The identification of candidate high-specificity protein biomarkers for human body fluids encountered in forensic investigations lays the foundation for the development of faster and more reliable approaches to the serological analysis of evidentiary stains.


Subject(s)
Biomarkers/analysis , Body Fluids/chemistry , Forensic Sciences/methods , Proteins/analysis , Proteome/analysis , Biomarkers/chemistry , Chromatography, High Pressure Liquid , Female , Humans , Male , Mass Spectrometry , Proteins/chemistry , Proteome/chemistry , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...