Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 116: 382-7, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24148419

ABSTRACT

We report a high performance autonomous analytical system based on the vanadomolybdate method for the determination of soluble reactive phosphorus in seawater. The system combines a microfluidic chip manufactured from tinted poly (methyl methacrylate) (PMMA), a custom made syringe pump, embedded control electronics and on-board calibration standards. This "lab-on-a-chip" analytical system was successfully deployed and cross-compared with reference analytical methods in coastal (south west England) and open ocean waters (tropical North Atlantic). The results of the miniaturized system compared well with a reference bench-operated phosphate auto-analyser and showed no significant differences in the analytical results (student's t-test at 95% confidence level). The optical technology used, comprising of tinted PMMA and polished fluidic channels, has allowed an improvement of two orders of magnitude of the limit of detection (52 nM) compared to currently available portable systems based on this method. The system has a wide linear dynamic range 0.1-60 µM, and a good precision (13.6% at 0.4 µM, n=4). The analytical results were corrected for silicate interferences at 0.7 µM, and the measurement frequency was configurable with a sampling throughput of up to 20 samples per hour. This portable micro-analytical system has a low reagent requirement (340 µL per sample) and power consumption (756 J per sample), and has allowed accurate high resolution measurements of soluble reactive phosphorus in seawater.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Molybdenum/chemistry , Phosphates/analysis , Phosphoric Acids/chemistry , Phosphorus/analysis , Seawater/chemistry , Vanadates/chemistry , Atlantic Ocean , Calibration , Hydrogen-Ion Concentration , Limit of Detection , Microfluidic Analytical Techniques/standards , Polymethyl Methacrylate/chemistry , Silicates/chemistry
2.
Environ Sci Technol ; 46(17): 9548-56, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22835223

ABSTRACT

Microfluidic technology permits the miniaturization of chemical analytical methods that are traditionally undertaken using benchtop equipment in the laboratory environment. When applied to environmental monitoring, these "lab-on-chip" systems could allow high-performance chemical analysis methods to be performed in situ over distributed sensor networks with large numbers of measurement nodes. Here we present the first of a new generation of microfluidic chemical analysis systems with sufficient analytical performance and robustness for deployment in natural waters. The system detects nitrate and nitrite (up to 350 µM, 21.7 mg/L as NO(3)(-)) with a limit of detection (LOD) of 0.025 µM for nitrate (0.0016 mg/L as NO(3)(-)) and 0.02 µM for nitrite (0.00092 mg/L as NO(2)(-)). This performance is suitable for almost all natural waters (apart from the oligotrophic open ocean), and the device was deployed in an estuarine environment (Southampton Water) to monitor nitrate+nitrite concentrations in waters of varying salinity. The system was able to track changes in the nitrate-salinity relationship of estuarine waters due to increased river flow after a period of high rainfall. Laboratory characterization and deployment data are presented, demonstrating the ability of the system to acquire data with high temporal resolution.


Subject(s)
Environmental Monitoring/instrumentation , Lab-On-A-Chip Devices , Nitrates/analysis , Nitrites/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Equipment Design , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...