Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559271

ABSTRACT

Background: The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing. The insula and dorsal anterior cingulate cortex (dACC) are brain regions that may be involved in generating the HEP. Low-intensity focused ultrasound (LIFU) is a non-invasive neuromodulation technique that can selectively target sub-regions of the insula and dACC to better understand their contributions to the HEP. Objective: Proof-of-concept study to determine whether LIFU modulation of the anterior insula (AI), posterior insula (PI), and dACC influences the HEP. Methods: In a within-subject, repeated-measures design, healthy human participants (n=16) received 10 minutes of stereotaxically targeted LIFU to the AI, PI, dACC or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was change in HEP amplitudes. Relationships between LIFU pressure and HEP changes were examined using linear mixed modelling. Peripheral indices of visceromotor output including heart rate and heart rate variability (HRV) were explored between conditions. Results: Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; this was partially explained by increased LIFU pressure. LIFU did not affect time or frequency dependent measures of HRV. Conclusions: These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.

2.
Pain ; 165(7): 1625-1641, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38314779

ABSTRACT

ABSTRACT: The insula is an intriguing target for pain modulation. Unfortunately, it lies deep to the cortex making spatially specific noninvasive access difficult. Here, we leverage the high spatial resolution and deep penetration depth of low-intensity focused ultrasound (LIFU) to nonsurgically modulate the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact heat-evoked potentials, as well as autonomic measures including heart-rate variability (HRV). In a within-subjects, repeated-measures, pseudo-randomized trial design, 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, electrodermal, electrocardiography and EEG recording. Low-intensity focused ultrasound was delivered to the AI (anterior short gyrus), PI (posterior longus gyrus), or under an inert Sham condition. The primary outcome measure was pain rating. Low-intensity focused ultrasound to both AI and PI similarly reduced pain ratings but had differential effects on EEG activity. Low-intensity focused ultrasound to PI affected earlier EEG amplitudes, whereas LIFU to AI affected later EEG amplitudes. Only LIFU to the AI affected HRV as indexed by an increase in SD of N-N intervals and mean HRV low-frequency power. Taken together, LIFU is an effective noninvasive method to individually target subregions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus.


Subject(s)
Electroencephalography , Heart Rate , Pain , Humans , Male , Heart Rate/physiology , Female , Adult , Young Adult , Pain/physiopathology , Pain Measurement/methods , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology , Insular Cortex/physiology , Electrocardiography , Pain Perception/physiology , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Hot Temperature
3.
J Neurosci ; 44(8)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38182418

ABSTRACT

The dorsal anterior cingulate cortex (dACC) is a critical brain area for pain and autonomic processing, making it a promising noninvasive therapeutic target. We leverage the high spatial resolution and deep focal lengths of low-intensity focused ultrasound (LIFU) to noninvasively modulate the dACC for effects on behavioral and cardiac autonomic responses using transient heat pain stimuli. A N = 16 healthy human volunteers (6 M/10 F) received transient contact heat pain during either LIFU to the dACC or Sham stimulation. Continuous electroencephalogram (EEG), electrocardiogram (ECG), and electrodermal response (EDR) were recorded. Outcome measures included pain ratings, heart rate variability, EDR response, blood pressure, and the amplitude of the contact heat-evoked potential (CHEP).LIFU reduced pain ratings by 1.09 ± 0.20 points relative to Sham. LIFU increased heart rate variability indexed by the standard deviation of normal sinus beats (SDNN), low-frequency (LF) power, and the low-frequency/high-frequency (LF/HF) ratio. There were no effects on the blood pressure or EDR. LIFU resulted in a 38.1% reduction in the P2 CHEP amplitude. Results demonstrate LIFU to the dACC reduces pain and alters autonomic responses to acute heat pain stimuli. This has implications for the causal understanding of human pain and autonomic processing in the dACC and potential future therapeutic options for pain relief and modulation of homeostatic signals.


Subject(s)
Acute Pain , Gyrus Cinguli , Humans , Gyrus Cinguli/diagnostic imaging , Autonomic Nervous System , Heart , Heart Rate/physiology , Pain Perception
4.
bioRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205396

ABSTRACT

The insula is a portion of the cerebral cortex folded deep within the lateral sulcus covered by the overlying opercula of the inferior frontal lobe and superior portion of the temporal lobe. The insula has been parsed into sub-regions based upon cytoarchitectonics and structural and functional connectivity with multiple lines of evidence supporting specific roles for each of these sub-regions in pain processing and interoception. In the past, causal interrogation of the insula was only possible in patients with surgically implanted electrodes. Here, we leverage the high spatial resolution combined with the deep penetration depth of low-intensity focused ultrasound (LIFU) to non-surgically modulate either the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact head evoked potentials (CHEPs) and time-frequency power as well as autonomic measures including heart-rate variability (HRV) and electrodermal response (EDR). N = 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, EDR and EEG recording. LIFU was delivered to either the AI (anterior short gyrus), PI (posterior longus gyrus) or under an inert sham condition time-locked to the heat stimulus. Results demonstrate that single-element 500 kHz LIFU is capable of individually targeting specific gyri of the insula. LIFU to both AI and PI similarly reduced perceived pain ratings but had differential effects on EEG activity. LIFU to PI affected earlier EEG amplitudes around 300 milliseconds whereas LIFU to AI affected EEG amplitudes around 500 milliseconds. In addition, only LIFU to the AI affected HRV as indexed by an increase in standard deviation of N-N intervals (SDNN) and mean HRV low frequency power. There was no effect of LIFU to either AI or PI on EDR or blood pressure. Taken together, LIFU looks to be an effective method to individually target sub-regions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus. These data have implications for the treatment of chronic pain and several neuropsychological diseases like anxiety, depression and addiction that all demonstrate abnormal activity in the insula concomitant with dysregulated autonomic function.

5.
Ultrasound Med Biol ; 49(6): 1422-1430, 2023 06.
Article in English | MEDLINE | ID: mdl-36889994

ABSTRACT

OBJECTIVE: Single-element low-intensity focused ultrasound (LIFU) is an emerging form of human neuromodulation. Current coupling methods are impractical for clinical bedside use. Here, we evaluate commercially available high-viscosity gel polymer matrices as couplants for human LIFU neuromodulation applications. METHODS: We first empirically tested the acoustic transmission of three densities at 500 kHz and then subjected the gel with the least acoustic attenuation to further tests of the effect of thickness, frequency, de-gassing and production variability. RESULTS: The highest-density gel had the lowest acoustic attenuation (3.3%) with low lateral (<0.5 mm) and axial (<2 mm) beam distortion. Different thicknesses of the gel up to 10 mm did not appreciably affect results. The gel polymers exhibited frequency-dependent attenuation at 1 and 3 MHz up to 86.6%, as well as significant beam distortion >4 mm. Poor de-gassing methods also increased pressure attenuation at 500 kHz up to 59.6%. Standardized methods of making these gels should be established to reduce variability. CONCLUSION: Commercially available de-gassed, high-density gel matrices are a low-cost, easily malleable, low-attenuation and distortion medium for the coupling of single-element LIFU transducers for human neuromodulation applications at 500 kHz.


Subject(s)
Gels , Ultrasonic Waves , Neurotransmitter Agents , Humans , Transcranial Magnetic Stimulation
6.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33853851

ABSTRACT

Focused ultrasound (US) is an emerging neuromodulation technology that has gained much attention because of its ability to modulate, noninvasively, neuronal activity in a variety of animals, including humans. However, there has been considerable debate about exactly which types of neurons can be influenced and what underlying mechanisms are in play. Are US-evoked motor changes driven indirectly by activated mechanosensory inputs, or more directly via central interneurons or motoneurons? Although it has been shown that US can mechanically depolarize mechanosensory neurons, there are no studies that have yet tested how identified motoneurons respond directly to US and what the underlying mechanism might be. Here, we examined the effects of US on a single, identified motoneuron within a well-studied and tractable invertebrate preparation, the medicinal leech, Hirudo verbana Our approach aimed to clarify single neuronal responses to US, which may be obscured in other studies whereby US is applied across a diverse population of cells. We found that US has the ability to inhibit tonic spiking activity through a predominately thermal mechanism. US-evoked effects persisted after blocking synaptic inputs, indicating that its actions were direct. Experiments also revealed that US-comparable heating blocked the axonal conduction of spontaneous action potentials. Finally, we found no evidence that US had significant mechanical effects on the neurons tested, a finding counter to prevailing views. We conclude that a non-sensory neuron can be directly inhibited via a thermal mechanism, a finding that holds promise for clinical neuromodulatory applications.


Subject(s)
Leeches , Motor Neurons , Action Potentials , Animals , Humans , Interneurons
7.
Cortex ; 129: 376-389, 2020 08.
Article in English | MEDLINE | ID: mdl-32574841

ABSTRACT

Implicit adaptation to visual rotations during fast reaching is a well-recognized function of the cerebellum. However, there is still no well-established understanding of the neural underpinnings that support explicit processes during visuomotor adaptation. We tested the causative involvement of dorsolateral prefrontal cortex (DLPFC) in an adaptive reaching task by employing excitatory intermittent theta burst stimulation (iTBS) to left or right DLPFC during learning to adapt to a sudden large visual rotation with delayed terminal feedback. Spontaneous resting-state electroencephalography (EEG) signals were recorded before and immediately after the administration of iTBS. iTBS to right DLPFC, compared to left DLPFC or control, induced faster adaptation to the rotation and had a greater adjustment of aiming directions in early adaptation trials. Moreover, resting-state functional connectivity of EEG of the frontal cortex after iTBS predicted subsequent adaptation rate. These results suggest a critical role of right DLPFC in supporting explicit learning in the adaptive reaching task.


Subject(s)
Prefrontal Cortex , Transcranial Magnetic Stimulation , Electroencephalography , Feedback , Frontal Lobe , Humans
8.
Sci Rep ; 10(1): 5573, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221350

ABSTRACT

Low intensity transcranial focused ultrasound (LIFU) is a promising method of non-invasive neuromodulation that uses mechanical energy to affect neuronal excitability. LIFU confers high spatial resolution and adjustable focal lengths for precise neuromodulation of discrete regions in the human brain. Before the full potential of low intensity ultrasound for research and clinical application can be investigated, data on the safety of this technique is indicated. Here, we provide an evaluation of the safety of LIFU for human neuromodulation through participant report and neurological assessment with a comparison of symptomology to other forms of non-invasive brain stimulation. Participants (N = 120) that were enrolled in one of seven human ultrasound neuromodulation studies in one laboratory at the University of Minnesota (2015-2017) were queried to complete a follow-up Participant Report of Symptoms questionnaire assessing their self-reported experience and tolerance to participation in LIFU research (Isppa 11.56-17.12 W/cm2) and the perceived relation of symptoms to LIFU. A total of 64/120 participant (53%) responded to follow-up requests to complete the Participant Report of Symptoms questionnaire. None of the participants experienced serious adverse effects. From the post-hoc assessment of safety using the questionnaire, 7/64 reported mild to moderate symptoms, that were perceived as 'possibly' or 'probably' related to participation in LIFU experiments. These reports included neck pain, problems with attention, muscle twitches and anxiety. The most common unrelated symptoms included sleepiness and neck pain. There were initial transient reports of mild neck pain, scalp tingling and headache that were extinguished upon follow-up. No new symptoms were reported upon follow up out to 1 month. The profile and incidence of symptoms looks to be similar to other forms of non-invasive brain stimulation.


Subject(s)
Neurons/physiology , Ultrasonic Therapy/adverse effects , Ultrasonic Therapy/methods , Ultrasonography/adverse effects , Ultrasonography/methods , Adult , Brain/physiopathology , Evaluation Studies as Topic , Female , Humans , Male , Nervous System Physiological Phenomena , Retrospective Studies , Surveys and Questionnaires , Young Adult
9.
J Neurosurg ; : 1-13, 2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31899872

ABSTRACT

OBJECTIVE: The authors evaluated the acoustic properties of an implantable, biocompatible, polyolefin-based cranial prosthesis as a medium to transmit ultrasound energy into the intracranial space with minimal distortion for imaging and therapeutic purposes. METHODS: The authors performed in vitro and in vivo studies of ultrasound transmission through a cranial prosthesis. In the in vitro phase, they analyzed the transmission of ultrasound energy through the prosthesis in a water tank using various transducers with resonance frequencies corresponding to those of devices used for neurosurgical imaging and therapeutic purposes. Four distinct, single-element, focused transducers were tested at fundamental frequencies of 500 kHz, 1 MHz, 2.5 MHz, and 5 MHz. In addition, the authors tested ultrasound transmission through the prosthesis using a linear diagnostic probe (center frequency 5.3 MHz) with a calibrated needle hydrophone in free water. Each transducer was assessed across a range of input voltages that encompassed their full minimum to maximum range without waveform distortion. They also tested the effect of the prosthesis on beam pressure and geometry. In the in vivo phase, the authors performed ultrasound imaging through the prosthesis implanted in a swine model. RESULTS: Acoustic power attenuation through the prosthesis was considerably lower than that reported to occur through the native cranial bone. Increasing the frequency of the transducer augmented the degree of acoustic power loss. The degradation/distortion of the ultrasound beams passing through the prosthesis was minimal in all 3 spatial planes (XY, XZ, and YZ) that were examined. The images acquired in vivo demonstrated no spatial distortion from the prosthesis, with spatial relationships that were superimposable to those acquired through the dura. CONCLUSIONS: The results of the tests performed on the polyolefin-based cranial prosthesis indicated that this is a valid medium for delivering both focused and unfocused ultrasound and obtaining ultrasound images of the intracranial space. The prosthesis may serve for several diagnostic and therapeutic ultrasound-based applications, including bedside imaging of the brain and ultrasound-guided focused ultrasound cerebral procedures.

10.
BMC Neurosci ; 19(1): 56, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30217150

ABSTRACT

BACKGROUND: Transcranial focused ultrasound (tFUS) is a new non-invasive neuromodulation technique that uses mechanical energy to modulate neuronal excitability with high spatial precision. tFUS has been shown to be capable of modulating EEG brain activity in humans that is spatially restricted, and here, we use 7T MRI to extend these findings. We test the effect of tFUS on 7T BOLD fMRI signals from individual finger representations in the human primary motor cortex (M1) and connected cortical motor regions. Participants (N = 5) performed a cued finger tapping task in a 7T MRI scanner with their thumb, index, and middle fingers to produce a BOLD signal for individual M1 finger representations during either tFUS or sham neuromodulation to the thumb representation. RESULTS: Results demonstrated a statistically significant increase in activation volume of the M1 thumb representation for the tFUS condition as compared to sham. No differences in percent BOLD changes were found. This effect was spatially confined as the index and middle finger M1 finger representations did not show similar significant changes in either percent change or activation volume. No effects were seen during tFUS to M1 in the supplementary motor area or the dorsal premotor cortex. CONCLUSIONS: Single element tFUS can be paired with high field MRI that does not induce significant artifact. tFUS increases activation volumes of the targeted finger representation that is spatially restricted within M1 but does not extend to functionally connected motor regions. Trial registration ClinicalTrials.gov NCT03634631 08/14/18.


Subject(s)
Hand/physiology , Magnetic Resonance Imaging , Motor Activity/physiology , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Ultrasonic Therapy/methods , Adult , Brain Mapping , Cerebrovascular Circulation , Female , Humans , Male , Oxygen/blood , Pilot Projects , Young Adult
12.
Sci Rep ; 8(1): 10007, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29968768

ABSTRACT

Transcranial focused ultrasound is an emerging form of non-invasive neuromodulation that uses acoustic energy to affect neuronal excitability. The effect of ultrasound on human motor cortical excitability and behavior is currently unknown. We apply ultrasound to the primary motor cortex in humans using a novel simultaneous transcranial ultrasound and magnetic stimulation paradigm that allows for concurrent and concentric ultrasound stimulation with transcranial magnetic stimulation (TMS). This allows for non-invasive inspection of the effect of ultrasound on motor neuronal excitability using the motor evoked potential (MEP). We test the effect of ultrasound on single pulse MEP recruitment curves and paired pulse protocols including short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). In addition, we test the effect of ultrasound to motor cortex on a stimulus response reaction time task. Results show ultrasound inhibits the amplitude of single-pulse MEPs and attenuates intracortical facilitation but does not affect intracortical inhibition. Ultrasound also reduces reaction time on a simple stimulus response task. This is the first report of the effect of ultrasound on human motor cortical excitability and motor behavior and confirms previous results in the somatosensory cortex that ultrasound results in effective neuronal inhibition that confers a performance advantage.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Physical Therapy Modalities , Transcranial Magnetic Stimulation/methods , Ultrasonic Therapy/methods , Adult , Female , Humans , Male , Neural Inhibition/physiology , Reaction Time/physiology , Somatosensory Cortex/physiology , Young Adult
13.
Neuron ; 98(5): 1020-1030.e4, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29804919

ABSTRACT

Ultrasound (US) can noninvasively activate intact brain circuits, making it a promising neuromodulation technique. However, little is known about the underlying mechanism. Here, we apply transcranial US and perform brain mapping studies in guinea pigs using extracellular electrophysiology. We find that US elicits extensive activation across cortical and subcortical brain regions. However, transection of the auditory nerves or removal of cochlear fluids eliminates the US-induced activity, revealing an indirect auditory mechanism for US neural activation. Our findings indicate that US activates the ascending auditory system through a cochlear pathway, which can activate other non-auditory regions through cross-modal projections. This cochlear pathway mechanism challenges the idea that US can directly activate neurons in the intact brain, suggesting that future US stimulation studies will need to control for this effect to reach reliable conclusions.


Subject(s)
Auditory Cortex/radiation effects , Auditory Pathways/radiation effects , Cochlea/radiation effects , Cochlear Nerve/radiation effects , Electrophysiological Phenomena/radiation effects , Neurons/radiation effects , Ultrasonic Waves , Animals , Brain/radiation effects , Brain Mapping , Cerebral Cortex/radiation effects , Guinea Pigs
14.
Hum Brain Mapp ; 39(5): 1995-2006, 2018 05.
Article in English | MEDLINE | ID: mdl-29380485

ABSTRACT

Transcranial focused ultrasound (tFUS) has proven capable of stimulating cortical tissue in humans. tFUS confers high spatial resolutions with deep focal lengths and as such, has the potential to noninvasively modulate neural targets deep to the cortex in humans. We test the ability of single-element tFUS to noninvasively modulate unilateral thalamus in humans. Participants (N = 40) underwent either tFUS or sham neuromodulation targeted at the unilateral sensory thalamus that contains the ventro-posterior lateral (VPL) nucleus of thalamus. Somatosensory evoked potentials (SEPs) were recorded from scalp electrodes contralateral to median nerve stimulation. Activity of the unilateral sensory thalamus was indexed by the P14 SEP generated in the VPL nucleus and cortical somatosensory activity by subsequent inflexions of the SEP and through time/frequency analysis. Participants also under went tactile behavioral assessment during either the tFUS or sham condition in a separate experiment. A detailed acoustic model using computed tomography (CT) and magnetic resonance imaging (MRI) is also presented to assess the effect of individual skull morphology for single-element deep brain neuromodulation in humans. tFUS targeted at unilateral sensory thalamus inhibited the amplitude of the P14 SEP as compared to sham. There is evidence of translation of this effect to time windows of the EEG commensurate with SI and SII activities. These results were accompanied by alpha and beta power attenuation as well as time-locked gamma power inhibition. Furthermore, participants performed significantly worse than chance on a discrimination task during tFUS stimulation.


Subject(s)
Brain Mapping , Evoked Potentials, Somatosensory/physiology , Thalamus/physiology , Ultrasonography, Doppler, Transcranial/methods , Acoustic Stimulation , Adolescent , Adult , Electroencephalography , Female , Fourier Analysis , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Thalamus/diagnostic imaging , Young Adult
15.
J Neural Eng ; 14(6): 066012, 2017 12.
Article in English | MEDLINE | ID: mdl-28777075

ABSTRACT

OBJECTIVE: Transcranial focused ultrasound is an emerging field for human non-invasive neuromodulation, but its dosing in humans is difficult to know due to the skull. The objective of the present study was to establish modeling methods based on medical images to assess skull differences between individuals on the wave propagation of ultrasound. APPROACH: Computational models of transcranial focused ultrasound were constructed using CT and MR scans to solve for intracranial pressure. We explored the effect of including the skull base in models, different transducer placements on the head, and differences between 250 kHz or 500 kHz acoustic frequency for both female and male models. We further tested these features using linear, nonlinear, and elastic simulations. To better understand inter-subject skull thickness and composition effects we evaluated the intracranial pressure maps between twelve individuals at two different skull sites. MAIN RESULTS: Nonlinear acoustic simulations resulted in virtually identical intracranial pressure maps with linear acoustic simulations. Elastic simulations showed a difference in max pressures and full width half maximum volumes of 15% at most. Ultrasound at an acoustic frequency of 250 kHz resulted in the creation of more prominent intracranial standing waves compared to 500 kHz. Finally, across twelve model human skulls, a significant linear relationship to characterize intracranial pressure maps was not found. SIGNIFICANCE: Despite its appeal, an inherent problem with the use of a noninvasive transcranial ultrasound method is the difficulty of knowing intracranial effects because of the skull. Here we develop detailed computational models derived from medical images of individuals to simulate the propagation of neuromodulatory ultrasound across the skull and solve for intracranial pressure maps. These methods allow for a much better understanding of the intracranial effects of ultrasound for an individual in order to ensure proper targeting and more tightly control dosing.


Subject(s)
Computer Simulation , Models, Anatomic , Skull/diagnostic imaging , Ultrasonography, Doppler, Transcranial/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Skull/anatomy & histology , Tomography, X-Ray Computed/methods , Transcutaneous Electric Nerve Stimulation/methods
16.
J Neural Eng ; 13(5): 056002, 2016 10.
Article in English | MEDLINE | ID: mdl-27464603

ABSTRACT

OBJECTIVE: While ultrasound is largely established for use in diagnostic imaging, its application for neuromodulation is relatively new and crudely understood. The objective of the present study was to investigate the effects of tissue properties and geometry on the wave propagation and heating in the context of transcranial neuromodulation. APPROACH: A computational model of transcranial-focused ultrasound was constructed and validated against empirical data. The models were then incrementally extended to investigate a number of issues related to the use of ultrasound for neuromodulation, including the effect on wave propagation of variations in geometry of skull and gyral anatomy as well as the effect of multiple tissue and media layers, including scalp, skull, CSF, and gray/white matter. In addition, a sensitivity analysis was run to characterize the influence of acoustic properties of intracranial tissues. Finally, the heating associated with ultrasonic stimulation waveforms designed for neuromodulation was modeled. MAIN RESULTS: The wave propagation of a transcranially focused ultrasound beam is significantly influenced by the cranial domain. The half maximum acoustic beam intensity profiles are insensitive overall to small changes in material properties, though the inclusion of sulci in models results in greater peak intensity values compared to a model without sulci (1%-30% greater). Finally, heating using currently employed stimulation parameters in humans is highest in bone (0.16 °C) and is negligible in brain (4.27 × 10(-3) °C) for a 0.5 s exposure. SIGNIFICANCE: Ultrasound for noninvasive neuromodulation holds great promise and appeal for its non-invasiveness, high spatial resolution and deep focal lengths. Here we show gross brain anatomy and biological material properties to have limited effect on ultrasound wave propagation and to result in safe heating levels in the skull and brain.


Subject(s)
Brain/anatomy & histology , Brain/radiation effects , Nervous System Physiological Phenomena/radiation effects , Ultrasonics , Bone and Bones/radiation effects , Cerebrospinal Fluid/radiation effects , Computer Simulation , Gray Matter/anatomy & histology , Gray Matter/radiation effects , Hot Temperature , Humans , Models, Neurological , Skull/anatomy & histology , Skull/radiation effects , Thermodynamics , Wavelet Analysis , White Matter/anatomy & histology , White Matter/radiation effects
17.
Neurocrit Care ; 24(2): 308-19, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26399249

ABSTRACT

The objective of this paper is to review the current literature regarding the use of vagus nerve stimulation (VNS) in preclinical models of traumatic brain injury (TBI) as well as discuss the potential role of VNS along with alternative neuromodulation approaches in the treatment of human TBI. Data from previous studies have demonstrated VNS-mediated improvement following TBI in animal models. In these cases, VNS was observed to enhance motor and cognitive recovery, attenuate cerebral edema and inflammation, reduce blood brain barrier breakdown, and confer neuroprotective effects. Yet, the underlying mechanisms by which VNS enhances recovery following TBI remain to be fully elucidated. Several hypotheses have been offered including: a noradrenergic mechanism, reduction in post-TBI seizures and hyper-excitability, anti-inflammatory effects, attenuation of blood-brain barrier breakdown, and cerebral edema. We present other potential mechanisms by which VNS acts including enhancement of synaptic plasticity and recruitment of endogenous neural stem cells, stabilization of intracranial pressure, and interaction with the ghrelin system. In addition, alternative methods for the treatment of TBI including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are discussed. Although the primary source data show that VNS improves TBI outcomes, it remains to be determined if these findings can be translated to clinical settings.


Subject(s)
Brain Injuries, Traumatic/therapy , Electric Stimulation Therapy/methods , Ultrasonic Waves , Vagus Nerve Stimulation/methods , Animals , Humans
18.
Cereb Cortex ; 26(11): 4315-4326, 2016 10 17.
Article in English | MEDLINE | ID: mdl-26400915

ABSTRACT

Memory impairments and heightened prefrontal cortical (PFC) activity are hallmarks of cognitive and neurobiological human aging. While structural integrity of PFC gray matter and interregional white matter tracts are thought to impact memory processing, the balance of neurotransmitters within the PFC itself is less well understood. We used fMRI to establish whole-brain networks involved in a memory encoding task and dynamic causal models (DCMs) for fMRI to determine the causal relationships between these areas. These data revealed enhanced connectivity from PFC to medial temporal cortex that negatively correlated with recall ability. To better understand the intrinsic activity within the PFC, DCM for EEG was employed after continuous theta burst transcranial magnetic stimulation (TMS) to the PFC to assess the effect on excitatory/inhibitory (E/I) synaptic ratios and behavior. These data revealed that the young cohort had a stable E/I ratio that was unaffected by the TMS intervention, while the aged cohort exhibited lower E/I ratios driven by a greater intrinsic inhibitory tone. TMS to the aged cohort resulted in decreased intrinsic inhibition and a decrement in memory performance. These results demonstrate increased top-down influence of PFC upon medial temporal lobe in healthy aging that is associated with decreased memory and may be due to unstable local inhibitory tone within the PFC.


Subject(s)
Aging/physiology , Brain Mapping , Evoked Potentials/physiology , Memory/physiology , Neural Inhibition/physiology , Prefrontal Cortex/physiology , Adult , Aged , Female , Gamma Rhythm , Humans , Image Processing, Computer-Assisted , Male , Mental Recall/physiology , Middle Aged , Models, Neurological , Oxygen/blood , Photic Stimulation , Prefrontal Cortex/diagnostic imaging , Transcranial Magnetic Stimulation , Young Adult
19.
Brain Stimul ; 7(6): 900-8, 2014.
Article in English | MEDLINE | ID: mdl-25265863

ABSTRACT

BACKGROUND: The integration of EEG recordings and transcranial neuromodulation has provided a useful construct for noninvasively investigating the modification of human brain circuit activity. Recent evidence has demonstrated that focused ultrasound can be targeted through the human skull to affect the amplitude of somatosensory evoked potentials and its associated spectral content. OBJECTIVE/HYPOTHESIS: The present study tests whether focused ultrasound transmitted through the human skull and targeted to somatosensory cortex can affect the phase and phase rate of cortical oscillatory dynamics. METHODS: A computational model was developed to gain insight regarding the insertion behavior of ultrasound induced pressure waves in the human head. The instantaneous phase and phase rate of EEG recordings before, during, and after transmission of transcranial focused ultrasound (tFUS) to human somatosensory cortex were examined to explore its effects on phase dynamics. RESULTS: Computational modeling results show the skull effectively reinforces the focusing of tFUS due to curvature of material interfaces. Neurophysiological recordings show that tFUS alters the phase distribution of intrinsic brain activity for beta frequencies, but not gamma. This modulation was accompanied by a change in phase rate of both beta and gamma frequencies. Additionally, tFUS modulated phase distributions in the beta band of early sensory-evoked activity but did not affect late sensory-evoked activity, lending support to the spatial specificity of tFUS for neuromodulation. This spatial specificity was confirmed through an additional experiment where the ultrasound transducer was moved 1 cm laterally from the original cortical target. CONCLUSIONS: Focused ultrasonic energy can alter EEG oscillatory dynamics through local mechanical perturbation of discrete cortical circuits.


Subject(s)
Brain Waves/physiology , Evoked Potentials, Somatosensory/physiology , Somatosensory Cortex/physiology , Sound , Adolescent , Adult , Electroencephalography , Female , Humans , Male , Middle Aged , Models, Neurological , Young Adult
20.
Nat Neurosci ; 17(2): 322-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24413698

ABSTRACT

Improved methods of noninvasively modulating human brain function are needed. Here we probed the influence of transcranial focused ultrasound (tFUS) targeted to the human primary somatosensory cortex (S1) on sensory-evoked brain activity and sensory discrimination abilities. The lateral and axial spatial resolution of the tFUS beam implemented were 4.9 mm and 18 mm, respectively. Electroencephalographic recordings showed that tFUS significantly attenuated the amplitudes of somatosensory evoked potentials elicited by median nerve stimulation. We also found that tFUS significantly modulated the spectral content of sensory-evoked brain oscillations. The changes produced by tFUS on sensory-evoked brain activity were abolished when the acoustic beam was focused 1 cm anterior or posterior to S1. Behavioral investigations showed that tFUS targeted to S1 enhanced performance on sensory discrimination tasks without affecting task attention or response bias. We conclude that tFUS can be used to focally modulate human cortical function.


Subject(s)
Brain Mapping , Evoked Potentials, Somatosensory/physiology , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiology , Ultrasonography, Doppler, Transcranial/methods , Acoustic Stimulation , Alkaloids , Discrimination, Psychological/physiology , Electroencephalography , Functional Laterality , Humans , Image Processing, Computer-Assisted , Skull Base/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...