Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(48): 19169-19179, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053340

ABSTRACT

Bivalves serve as an ideal ecological indicator; hence, their use by the NOAA Mussel Watch Program to monitor environmental health. This study aimed to expand the baseline knowledge of using metabolic end points in environmental monitoring by investigating the dreissenid mussel metabolome in the field. Dreissenids were caged at four locations along the Maumee River for 30 days. The mussel metabolome was measured using nuclear magnetic resonance spectroscopy, and mussel tissue chemical contaminants were analyzed using gas or liquid chromatography coupled with mass spectrometry. All Maumee River sites had a distinct mussel metabolome compared to the reference site and revealed changes in the energy metabolism and amino acids. Data also highlighted the importance of considering seasonality or handling effects on the metabolome at the time of sampling. The furthest upstream site presented a specific mussel tissue chemical signature of pesticides (atrazine and metolachlor), while a downstream site, located at Toledo's wastewater treatment plant, was characterized by polycyclic aromatic hydrocarbons and other organic contaminants. Further research into the dreissenid mussel's natural metabolic cycle and metabolic response to specific anthropogenic stressors is necessary before successful implementation of metabolomics in a biomonitoring program.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Lakes , Bivalvia/chemistry , Bivalvia/metabolism , Metabolomics , Environmental Monitoring/methods , Metabolome , Water Pollutants, Chemical/analysis
2.
Nat Commun ; 14(1): 2995, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225696

ABSTRACT

The increasing application of RNA sequencing to study non-model species demands easy-to-use and efficient bioinformatics tools to help researchers quickly uncover biological and functional insights. We developed ExpressAnalyst ( www.expressanalyst.ca ), a web-based platform for processing, analyzing, and interpreting RNA-sequencing data from any eukaryotic species. ExpressAnalyst contains a series of modules that cover from processing and annotation of FASTQ files to statistical and functional analysis of count tables or gene lists. All modules are integrated with EcoOmicsDB, an ortholog database that enables comprehensive analysis for species without a reference transcriptome. By coupling ultra-fast read mapping algorithms with high-resolution ortholog databases through a user-friendly web interface, ExpressAnalyst allows researchers to obtain global expression profiles and gene-level insights from raw RNA-sequencing reads within 24 h. Here, we present ExpressAnalyst and demonstrate its utility with a case study of RNA-sequencing data from multiple non-model salamander species, including two that do not have a reference transcriptome.


Subject(s)
Algorithms , Computational Biology , Databases, Factual , Eukaryota , RNA/genetics
3.
Article in English | MEDLINE | ID: mdl-35589063

ABSTRACT

Early-life stage (ELS) avian toxicity tests have been proposed as a more ethical alternative to traditional standardized tests with adult birds. At the same time, 'omics approaches are gaining traction in the field of avian toxicology, but little has been done to characterize the metabolome and transcriptome at different life stages. The present study uses 'omics data from toxicity tests of 8 environmental chemicals in ELS and adult Japanese quail (Coturnix japonica) to address this data gap. Previous analyses of these data focused on responses to each of the individual chemicals. Here, we consider data from all studies to describe variation in the metabolome and transcriptome between life stages and across independent experiments, irrespective of chemical treatment. Of the 230 metabolites detected in liver, 163 were shared between the two life stages. However, many of the targeted bile acids that were present in the adult liver were absent from ELS samples. For the transcriptome, >90% of the 18,364 detected transcripts were common to both life stages. Based on the 213 genes solely detected in ELS liver, the neuroactive ligand-receptor interaction pathway was significantly enriched. Multivariate and hierarchical clustering analyses revealed that variability among independent experiments was higher for the adult than the ELS studies at both the metabolomic and transcriptomic levels. Our results indicate concordance of the two approaches, with less variation between independent experiments in the ELS metabolome and transcriptome than in adults, lending support for the use of ELS as an alternative toxicity testing strategy.


Subject(s)
Coturnix , Transcriptome , Animals , Coturnix/genetics , Metabolome , Metabolomics , Toxicity Tests
4.
Metabolites ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34940609

ABSTRACT

This proof-of-concept study characterizes the Japanese quail (Coturnix japonica) hepatic metabolome following exposure to benzo[a]pyrene, chlorpyrifos, ethinylestradiol, fluoxetine hydrochloride, hexabromocyclododecane, lead(II)nitrate, seleno-L-methionine, and trenbolone in embryos and adults. The analysis revealed effects on lipid metabolism following exposure to several chemicals at both life stages. The most pronounced effects were observed in embryos exposed to 41.1 µg/g chlorpyrifos. This work highlighted challenges and the need for further avian metabolomics studies.

5.
PLoS One ; 16(9): e0256735, 2021.
Article in English | MEDLINE | ID: mdl-34478479

ABSTRACT

The crustacean molting process is regulated by an interplay of hormones produced by the eyestalk ganglia and Y-organs (YO). Molt-inhibiting hormone and crustacean hyperglycemic hormone released by the sinus gland of the eyestalk ganglia (EG) inhibit the synthesis and secretion of ecdysteroid by the YO, hence regulating hemolymph levels during the molt cycle. The purpose of this study is to investigate the ecdysteroidogenesis pathway, specifically genes linked to changes in ecdysteroid levels occurring at early premolt (ePM). To this end, a reference transcriptome based on YO, EG, and hepatopancreas was de novo assembled. Two genes (cholesterol 7-desaturase Neverland and cytochrome p450 307a1-like Spook) involved in ecdysteroidogenesis were identified from the YO transcriptome using sequence comparisons and transcript abundance. Two other candidates, Hormone receptor 4 and probable cytochrome p450 49a1 potentially involved in ecdysteroidogenesis were also identified. Since cholesterol is the ecdysteroid precursor, a putative cholesterol carrier (Apolipoprotein D-like) was also examined to understand if cholesterol uptake coincided with the increase in the ecdysteroid levels at the ePM stage. The expression level changes of the five candidate genes in the YO were compared between intermolt (IM) and induced ePM (iePM) stages using transcriptomic analysis. Expression analysis using qPCR were carried out at IM, iePM, and normal ePM. The increase in Spook and Neverland expression in the YO at the ePM was accompanied by a concomitant rise in ecdysteroid levels. The data obtained from iePM stage were congruent with those obtained from the normal ePM stage of intact control animals. The present findings support the role of Halloween genes in the ecdysteroidogenesis and molt cycle in the blue crab, Callinectes sapidus.


Subject(s)
Brachyura , Cholesterol , Ecdysteroids , Gene Expression Regulation, Developmental , Molting/genetics , Animals , Arthropod Proteins/metabolism , Brachyura/genetics , Brachyura/metabolism , Cholesterol/genetics , Cholesterol/metabolism , Ecdysteroids/genetics , Ecdysteroids/metabolism , Hemolymph/metabolism , Invertebrate Hormones/metabolism , Transcriptome
6.
Environ Toxicol Chem ; 40(11): 3019-3033, 2021 11.
Article in English | MEDLINE | ID: mdl-34293216

ABSTRACT

Modern 21st-century toxicity testing makes use of omics technologies to address critical questions in toxicology and chemical management. Of interest are questions relating to chemical mechanisms of toxicity, differences in species sensitivity, and translation of molecular effects to observable apical endpoints. Our study addressed these questions by comparing apical outcomes and multiple omics responses in early-life stage exposure studies with Japanese quail (Coturnix japonica) and double-crested cormorant (Phalacrocorax auritus), representing a model and ecological species, respectively. Specifically, we investigated the dose-dependent response of apical outcomes as well as transcriptomics and metabolomics in the liver of each species exposed to chlorpyrifos, a widely used organophosphate pesticide. Our results revealed a clear pattern of dose-dependent disruption of gene expression and metabolic profiles in Japanese quail but not double-crested cormorant at similar chlorpyrifos exposure concentrations. The difference in sensitivity between species was likely due to higher metabolic transformation of chlorpyrifos in Japanese quail compared to double-crested cormorant. The most impacted biological pathways after chlorpyrifos exposure in Japanese quail included hepatic metabolism, oxidative stress, endocrine disruption (steroid and nonsteroid hormones), and metabolic disease (lipid and fatty acid metabolism). Importantly, we show consistent responses across biological scales, suggesting that significant disruption at the level of gene expression and metabolite profiles leads to observable apical responses at the organism level. Our study demonstrates the utility of evaluating effects at multiple biological levels of organization to understand how modern toxicity testing relates to outcomes of regulatory relevance, while also highlighting important, yet poorly understood, species differences in sensitivity to chemical exposure. Environ Toxicol Chem 2021;40:3019-3033. © 2021 SETAC.


Subject(s)
Chlorpyrifos , Coturnix , Animals , Chlorpyrifos/toxicity , Coturnix/genetics , Metabolomics , Species Specificity , Transcriptome
7.
Article in English | MEDLINE | ID: mdl-28974407

ABSTRACT

In recent years, the interest in the use of vitellogenin (VTG) as a biomarker of endocrine disruption in fish has led to VTG being considered as a potential tool in invertebrates. Among aquatic invertebrate models in ecotoxicology, the copepods are considered as reference species in marine, estuarine and freshwater ecosystems. In this context, we identified a VTG cDNA in Eurytemora affinis. The Ea-VTG2 cDNA is 5416bp in length with an open reading frame (ORF) of 5310bp that encodes a putative protein of 1769 amino acids residues. Phylogenetic analysis confirmed the hypothesis of a VTG duplication event before the emergence of the copepod species. The analysis of the Ea-VTG2 expression by qPCR in males and females according to their reproductive stages allowed transcript basal levels to be determined. The expression pattern revealed a gradual increase of transcript levels during maturation in females. Important inter-sex differences were observed with a VTG level in males ranging from about 1900- to 6800-fold lower than in females depending on their stage. Moreover, the protein was only detected in ovigerous females. The inducibility of Ea-VTG2 by chemicals was studied in males exposed to either a model of endocrine disruptor in vertebrates i.e. 4-nonylphenol (4-NP) or a crustacean hormone i.e. Methyl Farnesoate (MF), and in males sampled from a multi-contaminated estuary. No induction was highlighted. The VTG should not be considered as an appropriate biomarker in E. affinis as previously suggested for other crustaceans.


Subject(s)
Copepoda/metabolism , Endocrine Disruptors/toxicity , Vitellogenins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Biomarkers , Cloning, Molecular , DNA, Complementary , Fatty Acids, Unsaturated/toxicity , Female , Gene Expression Regulation/drug effects , Male , Water Pollutants, Chemical/toxicity
8.
Environ Sci Pollut Res Int ; 24(6): 5976-5984, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28032285

ABSTRACT

Due to the increase in the use of phytosanitary products during the last few decades, the importance to study the effect of pesticide mixtures has been established. In this study, we investigated the acute toxicity of two model insecticides, chlordecone (CLD) and pyriproxyfen (PXF), alone and in mixtures, in the estuarine copepod Eurytemora affinis. After 48 h of exposure, the relative LC50 were 73.24 and 131.61 µg/L for PXF and CLD, respectively. The lower concentration tested (10 µg/L) did not affect the mortality of E. affinis whatever the considered chemical compound. To understand the interaction between compounds in mixture, the results were fitted to the concentration addition, Vølund, and Hewlett models. The best fit was obtained with the Hewlett model, suggesting a synergistic effect of the mixture.


Subject(s)
Chlordecone/toxicity , Copepoda/drug effects , Insecticides/toxicity , Pyridines/toxicity , Water Pollutants, Chemical/toxicity , Animals , Copepoda/growth & development , Male
9.
Aquat Toxicol ; 176: 64-75, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27111276

ABSTRACT

Copepods-which include freshwater and marine species-represent the most abundant group of aquatic invertebrates. Among them, the calanoid copepod Eurytemora affinis is widely represented in the northern hemisphere estuaries and has become a species of interest in ecotoxicology. Like other non-target organisms, E. affinis may be exposed to a wide range of chemicals such as endocrine disruptors (EDs). This study investigated the gene expression variation in E. affinis after exposure to ED pesticides-chosen as model EDs-in order to (i) improve the knowledge on their effects in crustaceans, and (ii) highlight relevant transcripts for further development of potential biomarkers of ED exposure/effect. The study focused on the reproduction function in response to ED. Copepods were exposed to sublethal concentrations of pyriproxyfen (PXF) and chlordecone (CLD) separately. After 48h, males and females (400 individuals each) were sorted for RNA extraction. Their transcriptome was pyrosequenced using the Illumina(®) technology. Contigs were blasted and functionally annotated using Blast2GO(®). The differential expression analysis between ED- and acetone-exposed organisms was performed according to sexes and contaminants. Half of the 19,721 contigs provided by pyrosequencing were annotated, mostly (80%) from arthropod sequences. Overall, 2,566 different genes were differentially expressed after ED exposures in comparison with controls. As many genes were differentially expressed after PXF exposure as after CLD exposure. In contrast, more genes were differentially expressed in males than in females after both exposures. Ninety-seven genes overlapped in all conditions. Finally, 31 transcripts involved in reproduction, growth and development, and changed in both chemical exposures were selected as potential candidates for future development of biomarkers.


Subject(s)
Copepoda/drug effects , Endocrine Disruptors/toxicity , Pesticides/toxicity , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Animals , Chlordecone/toxicity , Copepoda/genetics , Copepoda/metabolism , Estuaries , Female , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Male , Pyridines/toxicity , Transcriptome/drug effects , Water Pollutants, Chemical/chemistry
10.
Environ Toxicol Chem ; 35(7): 1860-71, 2016 07.
Article in English | MEDLINE | ID: mdl-26677818

ABSTRACT

Proteomics was used in the calanoid copepod Eurytemora affinis for screening of protein expression modifications induced by organic contaminants. The copepods were exposed in a continuous flow-through system for 86 h to environmentally relevant concentrations of contaminants representative of the pollution in the Seine Estuary (Haute-Normandie, France; diuron, 500 ng L(-1) ; alkylphenol mixture, 1000 ng L(-1) ). Proteome analysis of whole-body copepod extracts by 2-dimensional gel electrophoresis revealed that the contaminants induced modifications in protein expression, with the highest quantitative variations occurring after diuron exposure. Specifically, 88 and 41 proteins were differentially expressed after diuron and alkylphenol treatments, respectively. After mass spectrometry analysis, 51 (diuron exposure) and 15 (alkylphenol exposure) proteins were identified. The identified proteins were potentially related to energy metabolism, cell growth, nervous signal conductivity, excitotoxicity, oxidative stress response, and antioxidant defense. The data suggest a massive general disturbance of physiological functions of E. affinis after diuron exposure, whereas alkylphenols induced an alteration of a few targeted physiological functions. The protein expression signatures identified after contaminant exposure deserve further investigation in terms of the development of novel potential biomarkers for water quality assessment. Environ Toxicol Chem 2016;35:1860-1871. © 2015 SETAC.


Subject(s)
Copepoda/metabolism , Diuron/toxicity , Phenols/toxicity , Proteome/drug effects , Water Pollutants, Chemical/toxicity , Animals , Copepoda/drug effects , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism/drug effects , Mass Spectrometry , Phenols/chemistry , Proteome/analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...