Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Skelet Muscle ; 12(1): 7, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35287700

ABSTRACT

BACKGROUND: Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression. METHODS: We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11. RESULTS: In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected. CONCLUSIONS: GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited.


Subject(s)
Muscle, Skeletal , Myostatin , Amino Acid Sequence , Animals , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Female , Germ Cells/metabolism , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Male , Mice , Muscle, Skeletal/metabolism , Myostatin/genetics , Myostatin/metabolism , Signal Transduction
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34385332

ABSTRACT

Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-ß superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous Fst, we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density. Moreover, by employing a genetic strategy to target Fst expression only in the posterior (caudal) region of the animal, we show that the effects of Fst loss are mostly restricted to the posterior region, implying that locally produced FST plays a much more important role than circulating FST with respect to regulation of muscle and bone. Finally, we show that targeting receptors for these ligands specifically in osteoblasts leads to dramatic increases in bone mass, with trabecular bone volume fraction being increased by 12- to 13-fold and bone mineral density being increased by 8- to 9-fold in humeri, femurs, and lumbar vertebrae. These findings demonstrate that bone, like muscle, has an enormous inherent capacity for growth that is normally kept in check by this signaling system and suggest that the extent to which this regulatory mechanism may be used throughout the body to regulate tissue mass may be more significant than previously appreciated.


Subject(s)
Bone Development/physiology , Follistatin/metabolism , Muscle, Skeletal/growth & development , Transforming Growth Factor beta/metabolism , Alleles , Animals , Bone Density , Follistatin/genetics , Gene Expression Regulation , Gene Expression Regulation, Developmental/physiology , Heterozygote , Homeostasis , Mice , Multigene Family , Signal Transduction , Transforming Growth Factor beta/genetics
3.
Proc Natl Acad Sci U S A ; 117(49): 30907-30917, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33219121

ABSTRACT

Myostatin (MSTN) is a transforming growth factor-ß (TGF-ß) family member that normally acts to limit muscle growth. The function of MSTN is partially redundant with that of another TGF-ß family member, activin A. MSTN and activin A are capable of signaling through a complex of type II and type I receptors. Here, we investigated the roles of two type II receptors (ACVR2 and ACVR2B) and two type I receptors (ALK4 and ALK5) in the regulation of muscle mass by these ligands by genetically targeting these receptors either alone or in combination specifically in myofibers in mice. We show that targeting signaling in myofibers is sufficient to cause significant increases in muscle mass, showing that myofibers are the direct target for signaling by these ligands in the regulation of muscle growth. Moreover, we show that there is functional redundancy between the two type II receptors as well as between the two type I receptors and that all four type II/type I receptor combinations are utilized in vivo. Targeting signaling specifically in myofibers also led to reductions in overall body fat content and improved glucose metabolism in mice fed either regular chow or a high-fat diet, demonstrating that these metabolic effects are the result of enhanced muscling. We observed no effect, however, on either bone density or muscle regeneration in mice in which signaling was targeted in myofibers. The latter finding implies that MSTN likely signals to other cells, such as satellite cells, in addition to myofibers to regulate muscle homeostasis.


Subject(s)
Activin Receptors, Type II/metabolism , Activin Receptors, Type I/metabolism , Activins/metabolism , Muscle Development , Myostatin/metabolism , Animals , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscles/metabolism , Organ Size
4.
Proc Natl Acad Sci U S A ; 117(38): 23942-23951, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32900939

ABSTRACT

Among the physiological consequences of extended spaceflight are loss of skeletal muscle and bone mass. One signaling pathway that plays an important role in maintaining muscle and bone homeostasis is that regulated by the secreted signaling proteins, myostatin (MSTN) and activin A. Here, we used both genetic and pharmacological approaches to investigate the effect of targeting MSTN/activin A signaling in mice that were sent to the International Space Station. Wild type mice lost significant muscle and bone mass during the 33 d spent in microgravity. Muscle weights of Mstn-/- mice, which are about twice those of wild type mice, were largely maintained during spaceflight. Systemic inhibition of MSTN/activin A signaling using a soluble form of the activin type IIB receptor (ACVR2B), which can bind each of these ligands, led to dramatic increases in both muscle and bone mass, with effects being comparable in ground and flight mice. Exposure to microgravity and treatment with the soluble receptor each led to alterations in numerous signaling pathways, which were reflected in changes in levels of key signaling components in the blood as well as their RNA expression levels in muscle and bone. These findings have implications for therapeutic strategies to combat the concomitant muscle and bone loss occurring in people afflicted with disuse atrophy on Earth as well as in astronauts in space, especially during prolonged missions.


Subject(s)
Activins/metabolism , Bone Resorption/metabolism , Muscle, Skeletal/metabolism , Myostatin , Space Flight , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscular Atrophy/metabolism , Myostatin/genetics , Myostatin/metabolism , Signal Transduction
5.
Sci Rep ; 7(1): 14275, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079832

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder of which skeletal muscle atrophy is a common feature, and multiple lines of evidence support a muscle-based pathophysiology in HD mouse models. Inhibition of myostatin signaling increases muscle mass, and therapeutic approaches based on this are in clinical development. We have used a soluble ActRIIB decoy receptor (ACVR2B/Fc) to test the effects of myostatin/activin A inhibition in the R6/2 mouse model of HD. Weekly administration from 5 to 11 weeks of age prevented body weight loss, skeletal muscle atrophy, muscle weakness, contractile abnormalities, the loss of functional motor units in EDL muscles and delayed end-stage disease. Inhibition of myostatin/activin A signaling activated transcriptional profiles to increase muscle mass in wild type and R6/2 mice but did little to modulate the extensive Huntington's disease-associated transcriptional dysregulation, consistent with treatment having little impact on HTT aggregation levels. Modalities that inhibit myostatin signaling are currently in clinical trials for a variety of indications, the outcomes of which will present the opportunity to assess the potential benefits of targeting this pathway in HD patients.


Subject(s)
Huntington Disease/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Myostatin/antagonists & inhibitors , Activin Receptors, Type II/pharmacology , Animals , Body Weight/drug effects , Hand Strength/physiology , Huntingtin Protein/chemistry , Huntington Disease/complications , Huntington Disease/physiopathology , Male , Mice , Muscle, Skeletal/pathology , Muscular Atrophy/complications , Muscular Atrophy/prevention & control , Protein Aggregates/drug effects
6.
Hum Mol Genet ; 24(20): 5711-9, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26206886

ABSTRACT

Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf(-/-)) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf(-/-) mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf(-/-) mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf(-/-) mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf(-/-) mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis.


Subject(s)
Membrane Proteins/genetics , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/pathology , Myostatin/antagonists & inhibitors , Animals , Dysferlin , Follistatin/genetics , Follistatin/pharmacology , Gene Knockout Techniques , Hypertrophy/metabolism , Hypertrophy/physiopathology , Male , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/physiopathology , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...