Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Cycle ; 20(1): 65-80, 2021 01.
Article in English | MEDLINE | ID: mdl-33356791

ABSTRACT

Palbociclib, a selective CDK4/6 kinase inhibitor, is approved in combination with endocrine therapies for the treatment of advanced estrogen receptor positive (ER+) breast cancer. In pre-clinical cancer models, CDK4/6 inhibitors act primarily as cytostatic agents. In two commonly studied ER+ breast cancer cell lines (MCF7 and T47D), CDK4/6 inhibition drives G1-phase arrest and the acquisition of a senescent-like phenotype, both of which are reversible upon palbociclib withdrawal (incomplete senescence). Here we identify an ER+ breast cancer cell line, CAMA1, in which palbociclib treatment induces irreversible cell cycle arrest and senescence (complete senescence). In stark contrast to T47D and MCF7 cells, mTORC1 activity is not stably suppressed in CAMA1 cells during palbociclib treatment. Importantly, inhibition of mTORC1 signaling either by the mTORC1 inhibitor rapamycin or by knockdown of Raptor, a unique component of mTORC1, during palbociclib treatment of CAMA1 cells blocks the induction of complete senescence. These results indicate that sustained mTORC1 activity promotes complete senescence in ER+ breast cancer cells during CDK4/6 inhibitor-induced cell cycle arrest. Consistent with this mechanism, genetic depletion of TSC2, a negative regulator of mTORC1, in MCF7 cells resulted in sustained mTORC1 activity during palbociclib treatment and evoked a complete senescence response. These findings demonstrate that persistent mTORC1 signaling during palbociclib-induced G1 arrest is a potential liability for ER+ breast cancer cells, and suggest a strategy for novel drug combinations with palbociclib.


Subject(s)
Breast Neoplasms/drug therapy , Cell Cycle Checkpoints/drug effects , Cellular Senescence/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Piperazines/pharmacology , Pyridines/pharmacology , Receptors, Estrogen/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Drug Resistance, Neoplasm/drug effects , Female , Humans , MCF-7 Cells , Mice , Signal Transduction/drug effects
2.
Science ; 367(6474): 146-147, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31919209
3.
J Biol Chem ; 295(1): 263-274, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31767684

ABSTRACT

Mammalian target of rapamycin complex 1 (mTORC1) promotes cell growth and proliferation in response to nutrients and growth factors. Amino acids induce lysosomal translocation of mTORC1 via the Rag GTPases. Growth factors activate Ras homolog enriched in brain (Rheb), which in turn activates mTORC1 at the lysosome. Amino acids and growth factors also induce the phospholipase D (PLD)-phosphatidic acid (PA) pathway, required for mTORC1 signaling through mechanisms that are not fully understood. Here, using human and murine cell lines, along with immunofluorescence, confocal microscopy, endocytosis, PLD activity, and cell viability assays, we show that exogenously supplied PA vesicles deliver mTORC1 to the lysosome in the absence of amino acids, Rag GTPases, growth factors, and Rheb. Of note, pharmacological or genetic inhibition of endogenous PLD prevented mTORC1 lysosomal translocation. We observed that precancerous cells with constitutive Rheb activation through loss of tuberous sclerosis complex subunit 2 (TSC2) exploit the PLD-PA pathway and thereby sustain mTORC1 activation at the lysosome in the absence of amino acids. Our findings indicate that sequential inputs from amino acids and growth factors trigger PA production required for mTORC1 translocation and activation at the lysosome.


Subject(s)
Amino Acids/deficiency , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphatidic Acids/metabolism , Amino Acids/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Endocytosis , Humans , Mice , Phospholipase D/metabolism , Protein Transport , Ras Homolog Enriched in Brain Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...