Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Nat Med ; 30(1): 199-206, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177855

ABSTRACT

Limb-girdle muscular dystrophy 2E/R4 is caused by mutations in the ß-sarcoglycan (SGCB) gene, leading to SGCB deficiency and consequent muscle loss. We developed a gene therapy approach based on functional replacement of the deficient SCB protein. Here we report interim results from a first-in-human, open-label, nonrandomized, phase 1/2 trial evaluating the safety and efficacy of bidridistrogene xeboparvovec, an adeno-associated virus-based gene therapy containing a codon-optimized, full-length human SGCB transgene. Patients aged 4-15 years with confirmed SGCB mutations at both alleles received one intravenous infusion of either 1.85 × 1013 vector genome copies kg-1 (Cohort 1, n = 3) or 7.41 × 1013 vector gene copies kg-1 (Cohort 2, n = 3). Primary endpoint was safety, and secondary endpoint was change in SGCB expression in skeletal muscle from baseline to Day 60. We report interim Year 2 results (trial ongoing). The most frequent treatment-related adverse events were vomiting (four of six patients) and gamma-glutamyl transferase increase (three of six patients). Serious adverse events resolved with standard therapies. Robust SGCB expression was observed: Day 60 mean (s.d.) percentage of normal expression 36.2% (2.7%) in Cohort 1 and 62.1% (8.7%) in Cohort 2. Post hoc exploratory analysis showed preliminary motor improvements using the North Star Assessment for Limb-girdle Type Muscular Dystrophies maintained through Year 2. The 2-year safety and efficacy of bidridistrogene xeboparvovec support clinical development advancement. Further studies are necessary to confirm the long-term safety and efficacy of this gene therapy. ClinicalTrials.gov registration: NCT03652259 .


Subject(s)
Muscular Dystrophies, Limb-Girdle , Sarcoglycanopathies , Humans , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/therapy , Sarcoglycanopathies/genetics , Sarcoglycanopathies/metabolism , Sarcoglycanopathies/therapy , Muscle, Skeletal/metabolism , Genetic Therapy/adverse effects , Genetic Therapy/methods
2.
mBio ; 15(2): e0303923, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38193657

ABSTRACT

The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.IMPORTANCEResistance to current antibiotics is increasingly common. New antibiotics that target essential processes are needed to expand clinical options. For Gram-negative bacteria, their cell surface-the outer membrane (OM)-is an essential organelle and antibiotic barrier that is an attractive target for new antibacterials. Lipoproteins are key to building the OM. The LolCDE transporter is needed to supply the OM with lipoproteins and has been a focus of recent antibiotic discovery. In vitro evidence recently proposed a two-part interaction of LolC with LolA lipoprotein chaperone (which traffics lipoproteins to the OM) via "Hook" and "Pad" regions. We show that this model does not reflect lipoprotein trafficking in vivo. Only the Hook is essential for lipoprotein trafficking and is remarkably robust to mutational changes. The Pad is non-essential for lipoprotein trafficking but plays an ancillary role, contributing to trafficking efficiency. These insights inform ongoing efforts to drug LolCDE.


Subject(s)
Escherichia coli Proteins , Periplasmic Binding Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Membrane Transport Proteins/metabolism , Gram-Negative Bacteria/metabolism , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism
3.
Muscle Nerve ; 69(1): 93-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37577753

ABSTRACT

INTRODUCTION/AIMS: Delandistrogene moxeparvovec is indicated in the United States for the treatment of ambulatory pediatric patients aged 4 through 5 years with Duchenne muscular dystrophy (DMD) with a confirmed mutation in the DMD gene. Long-term delandistrogene moxeparvovec microdystrophin protein (a shortened dystrophin that retains key functional domains of the wild-type protein) expression may positively alter disease progression in patients with DMD. We evaluated long-term safety and functional outcomes of delandistrogene moxeparvovec in patients with DMD. METHODS: An open-label, phase 1/2a, nonrandomized controlled trial (Study 101; NCT03375164) enrolled ambulatory males, ≥4 to <8 years old, with DMD. Patients received a single intravenous infusion (2.0 × 1014 vg/kg by supercoiled quantitative polymerase chain reaction) of delandistrogene moxeparvovec and prednisone (1 mg/kg/day) 1 day before to 30 days after treatment. The primary endpoint was safety. Functional outcomes were change from baseline in North Star Ambulatory Assessment (NSAA) and timed function tests. RESULTS: Four patients (mean age, 5.1 years) were enrolled. There were 18 treatment-related adverse events; all occurred within 70 days posttreatment and resolved. Mean NSAA total score increased from 20.5 to 27.5, baseline to year 4, with a mean (standard deviation) change of +7.0 (2.9). Post hoc analysis demonstrated a statistically significant and clinically meaningful 9-point difference in NSAA score, relative to a propensity-score-weighted external control cohort (least-squares mean [standard error] = 9.4 [3.4]; P = .0125). DISCUSSION: Gene transfer therapy with delandistrogene moxeparvovec treatment is well tolerated, with a favorable safety profile. Functional improvements are sustained through 4 years, suggesting delandistrogene moxeparvovec may positively alter disease progression.


Subject(s)
Muscular Dystrophy, Duchenne , Child , Child, Preschool , Humans , Male , Disease Progression , Genetic Therapy/adverse effects , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Prednisone/therapeutic use
4.
bioRxiv ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37986794

ABSTRACT

The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.

5.
Ann Neurol ; 94(5): 955-968, 2023 11.
Article in English | MEDLINE | ID: mdl-37539981

ABSTRACT

OBJECTIVE: Delandistrogene moxeparvovec is approved in the USA for the treatment of ambulatory patients (4-5 years) with Duchenne muscular dystrophy. ENDEAVOR (SRP-9001-103; NCT04626674) is a single-arm, open-label study to evaluate delandistrogene moxeparvovec micro-dystrophin expression, safety, and functional outcomes following administration of commercial process delandistrogene moxeparvovec. METHODS: In cohort 1 of ENDEAVOR (N = 20), eligible ambulatory males, aged ≥4 to <8 years, received a single intravenous infusion of delandistrogene moxeparvovec (1.33 × 1014 vg/kg). The primary endpoint was change from baseline (CFBL) to week 12 in delandistrogene moxeparvovec micro-dystrophin by western blot. Additional endpoints evaluated included: safety; vector genome copies; CFBL to week 12 in muscle fiber-localized micro-dystrophin by immunofluorescence; and functional assessments, including North Star Ambulatory Assessment, with comparison with a propensity score-weighted external natural history control. RESULTS: The 1-year safety profile of commercial process delandistrogene moxeparvovec in ENDEAVOR was consistent with safety data reported in other delandistrogene moxeparvovec trials (NCT03375164 and NCT03769116). Delandistrogene moxeparvovec micro-dystrophin expression was robust, with sarcolemmal localization at week 12; mean (SD) CFBL in western blot, 54.2% (42.6); p < 0.0001. At 1 year, patients demonstrated stabilized or improved North Star Ambulatory Assessment total scores; mean (SD) CFBL, +4.0 (3.5). Treatment versus a propensity score-weighted external natural history control demonstrated a statistically significant difference in least squares mean (standard error) CFBL in North Star Ambulatory Assessment, +3.2 (0.6) points; p < 0.0001. INTERPRETATION: Results confirm efficient transduction of muscle by delandistrogene moxeparvovec. One-year post-treatment, delandistrogene moxeparvovec was well tolerated, and demonstrated stabilized or improved motor function, suggesting a clinical benefit for patients with Duchenne muscular dystrophy. ANN NEUROL 2023;94:955-968.


Subject(s)
Muscular Dystrophy, Duchenne , Male , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Dystrophin/genetics , Genetic Therapy/methods , Infusions, Intravenous , Muscle Fibers, Skeletal
6.
Front Cell Dev Biol ; 11: 1167762, 2023.
Article in English | MEDLINE | ID: mdl-37497476

ABSTRACT

Introduction: Delandistrogene moxeparvovec (SRP-9001) is an investigational gene transfer therapy designed for targeted expression of SRP-9001 dystrophin protein, a shortened dystrophin retaining key functional domains of the wild-type protein. Methods: This Phase 2, double-blind, two-part (48 weeks per part) crossover study (SRP-9001-102 [Study 102]; NCT03769116) evaluated delandistrogene moxeparvovec in patients, aged ≥4 to <8 years with Duchenne muscular dystrophy. Primary endpoints (Part 1) were change from baseline (CFBL) in SRP-9001 dystrophin expression (Week 12), by Western blot, and in North Star Ambulatory Assessment (NSAA) score (Week 48). Safety assessments included treatment-related adverse events (TRAEs). Patients were randomized and stratified by age to placebo (n = 21) or delandistrogene moxeparvovec (n = 20) and crossed over for Part 2. Results: SRP-9001 dystrophin expression was achieved in all patients: mean CFBL to Week 12 was 23.82% and 39.64% normal in Parts 1 and 2, respectively. In Part 1, CFBL to Week 48 in NSAA score (least-squares mean, LSM [standard error]) was +1.7 (0.6) with treatment versus +0.9 (0.6) for placebo; p = 0.37. Disparity in baseline motor function between groups likely confounded these results. In 4- to 5-year-olds with matched baseline motor function, CFBL to Week 48 in NSAA scores was significantly different (+2.5 points; p = 0.0172), but not significantly different in 6-to-7-year-olds with imbalanced baseline motor function (-0.7 points; p = 0.5384). For patients treated with delandistrogene moxeparvovec in Part 2, CFBL to Week 48 in NSAA score was +1.3 (2.7), whereas for those treated in Part 1, NSAA scores were maintained. As all patients in Part 2 were exposed to treatment, results were compared with a propensity-score-weighted external control (EC) cohort. The LSM difference in NSAA score between the Part 2 treated group and EC cohort was statistically significant (+2.0 points; p = 0.0009). The most common TRAEs were vomiting, decreased appetite, and nausea. Most occurred within the first 90 days and all resolved. Discussion: Results indicate robust expression of SRP-9001 dystrophin and overall stabilization in NSAA up to 2 years post-treatment. Differences in NSAA between groups in Part 1 were not significant for the overall population, likely because cohorts were stratified only by age, and other critical prognostic factors were not well matched at baseline.

7.
mBio ; 13(3): e0075722, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35695460

ABSTRACT

The outer membrane (OM) of Gram-negative bacteria is an essential organelle that acts as a formidable barrier to antibiotics. Increasingly prevalent resistance to existing drugs has exacerbated the need for antibiotic discovery efforts targeting the OM. Acylated proteins, known as lipoproteins, are essential in every pathway needed to build the OM. The central role of OM lipoproteins makes their biogenesis a uniquely attractive therapeutic target, but it also complicates in vivo identification of on-pathway inhibitors, as inhibition of OM lipoprotein biogenesis broadly disrupts OM assembly. Here, we use genetics to probe the eight essential proteins involved in OM lipoprotein maturation and trafficking. We define a biological signature consisting of three simple assays that can characteristically identify OM lipoprotein biogenesis defects in vivo. We find that several known chemical inhibitors of OM lipoprotein biogenesis conform to the biological signature. We also examine MAC13243, a proposed inhibitor of OM lipoprotein biogenesis, and find that it fails to conform to the biological signature. Indeed, we demonstrate that MAC13243 activity relies entirely on a target outside of the OM lipoprotein biogenesis pathway. Hence, our signature offers simple tools to easily assess whether antibiotic lead compounds target an essential pathway that is the hub of OM assembly. IMPORTANCE Gram-negative bacteria have an outer membrane, which acts as a protective barrier and excludes many antibiotics. The limited number of antibiotics active against Gram-negative bacteria, along with rising rates of antibiotic resistance, highlights the need for efficient antibiotic discovery efforts. Unfortunately, finding the target of lead compounds, especially ones targeting outer membrane construction, remains difficult. The hub of outer membrane construction is the lipoprotein biogenesis pathway. We show that defects in this pathway result in a signature cellular response that can be used to quickly and accurately validate pathway inhibitors. Indeed, we found that MAC13243, a compound previously proposed to target outer membrane lipoprotein biogenesis, does not fit the signature, and we show that it instead targets an entirely different cellular pathway. Our findings offer a streamlined approach to the discovery and validation of lead antibiotics against a conserved and essential pathway in Gram-negative bacteria.


Subject(s)
Escherichia coli Proteins , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism
8.
Mol Ther Methods Clin Dev ; 25: 74-83, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35356756

ABSTRACT

Given the increasing number of gene transfer therapy studies either completed or underway, there is growing attention to the importance of preexisting adaptive immunity to the viral vectors used. The recombinant viral vectors developed for gene transfer therapy share structural features with naturally occurring wild-type virus. Antibodies generated against viral vectors obtained through a previous exposure to wild-type virus can potentially compromise transgene expression by blocking transduction, thereby limiting the therapeutic efficacy of the gene transfer therapy; they may also pose potential safety concerns. Therefore, systemic gene transfer delivery requires testing patients for preexisting antibodies. Two different assays have been used: (1) binding assays that focus on total antibodies (both neutralizing and non-neutralizing) and (2) neutralizing assays that detect neutralizing antibodies. In this review we focus on adeno-associated virus-based gene therapies, describing the immune response that occurs to naturally occurring adeno-associated viruses, the implications for patients with this exposure, the assays used to detect preexisting immune responses, and strategies to circumvent preexisting adaptive immunity to expand the patient base that could benefit from such therapies.

9.
Neurodegener Dis Manag ; 11(5): 411-429, 2021 10.
Article in English | MEDLINE | ID: mdl-34472379

ABSTRACT

Limb-girdle muscular dystrophies (LGMDs) represent a major group of muscle disorders. Treatment is sorely needed and currently expanding based on safety and efficacy adopting principles of single-dosing gene therapy for monogenic autosomal recessive disorders. Gene therapy has made in-roads for LGMD and this review describes progress that has been achieved for these conditions. This review first provides a background on the definition and classification of LGMDs. The major effort focuses on progress in LGMD gene therapy, from experimental studies to clinical trials. The disorders discussed include the LGMDs where the most work has been done including calpainopathies (LGMD2A/R1), dysferlinopathies (LGMD2B/R2) and sarcoglycanopathies (LGMD2C/R5, LGMD2D/R3, LGMD2E/R4). Early success in clinical trials provides a template to move the field forward and potentially apply emerging technology like CRISPR/Cas9 that may enhance the scope and efficacy of gene therapy applied to patient care.


Lay abstract Limb-girdle muscular dystrophy is a term that is applied to a group of relatively rare forms of muscular dystrophy. The term 'LGMD' was introduced in the 1950's, but there were no strict rules for defining the condition. This changed as a result of the 229th European Neuromuscular Center International Workshop in 2017 providing a clear definition and classification discussed in this article. Limb-girdle muscular dystrophy is now recognized as a genetic muscle disease with an elevated serum creatine kinase and dystrophic changes on muscle histology. Most treatments up to now rely on supportive measures for heart and lungs and assisting the physical limitations. Medications have not proven to be beneficial to stop progression of disease. This article focuses on new innovations of treatment that target the effected gene and the use special methods to replace the abnormal gene.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Sarcoglycanopathies , Humans , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/therapy
10.
JAMA Neurol ; 78(7): 834-841, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33999158

ABSTRACT

Importance: This ongoing study assesses long-term safety and durability of response in infants with spinal muscular atrophy (SMA) type 1 after dosing with onasemnogene abeparvovec gene replacement therapy. Objective: The primary objective of this ongoing study is to assess safety. The secondary objective is to determine whether developmental milestones achieved in the START phase 1 clinical trial were maintained and new milestones gained. Design, Setting, and Participants: This study is an ongoing, observational, follow-up study for continuous safety monitoring for 15 years in patients from the START phase I study (conducted May 5, 2014, through December 15, 2017) at Nationwide Children's Hospital in Columbus, Ohio. Participants were symptomatic infants with SMA type 1 and 2 copies of SMN2 previously treated with an intravenous dose of onasemnogene abeparvovec (low dose, 6.7 × 1013 vg/kg; or therapeutic dose, 1.1 × 1014 vg/kg) in START. Thirteen of 15 original START patients are included in this analysis; 2 patients' families declined follow-up participation. Data were analyzed from September 21, 2017, to June 11, 2020. Exposures: Median time since dosing of 5.2 (range, 4.6-6.2) years; 5.9 (range, 5.8-6.2) years in the low-dose cohort and 4.8 (range, 4.6-5.6) years in the therapeutic-dose cohort. Main Outcomes and Measures: The primary outcome measure was the incidence of serious adverse events (SAEs). Results: At data cutoff on June 11, 2020, 13 patients treated in START were enrolled in this study (median age, 38.9 [range, 25.4-48.0] months; 7 females; low-dose cohort, n = 3; and therapeutic-dose cohort, n = 10). Serious adverse events occurred in 8 patients (62%), none of which resulted in study discontinuation or death. The most frequently reported SAEs were acute respiratory failure (n = 4 [31%]), pneumonia (n = 4 [31%]), dehydration (n = 3 [23%]), respiratory distress (n = 2 [15%]), and bronchiolitis (n = 2 [15%]). All 10 patients in the therapeutic-dose cohort remained alive and without the need for permanent ventilation. Prior to baseline, 4 patients (40%) in the therapeutic-dose cohort required noninvasive ventilatory support, and 6 patients (60%) did not require regular ventilatory support, which did not change in long-term follow-up. All 10 patients treated with the therapeutic dose maintained previously acquired motor milestones. Two patients attained the new milestone of "standing with assistance" without the use of nusinersen. Conclusions and Relevance: The findings of this ongoing clinical follow-up of patients with SMA type 1 treated with onasemnogene abeparvovec supports the long-term favorable safety profile up to 6 years of age and provides evidence for sustained clinical durability of the therapeutic dose. Trial Registration: ClinicalTrials.gov Identifier: NCT03421977.


Subject(s)
Biological Products/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Spinal Muscular Atrophies of Childhood/drug therapy , Child , Child, Preschool , Female , Follow-Up Studies , Genetic Therapy/methods , Humans , Male , Treatment Outcome
12.
J Child Neurol ; 36(3): 177-185, 2021 03.
Article in English | MEDLINE | ID: mdl-33034535

ABSTRACT

The health-related quality of life and emotional distress among mothers of sons with Duchenne or Becker muscular dystrophies (n = 82) were compared to sex- and age group-matched controls (n = 26). Participants self-reported health-related quality of life for themselves and their son(s), emotional distress, and mood/anxiety-related medication. Mothers reported poorer health-related quality of life across all domains of their health-related quality of life, as well as higher levels of emotional distress. Clinically elevated symptoms of anxiety were reported by 39% of mothers. Mothers' report of poorer health-related quality of life for their son(s) was a significant predictor of worse health-related quality of life and emotional distress for themselves across most domains. Additionally, older age of mothers predicted greater energy/less fatigue and lower levels of anxiety. Results highlight the need for screening emotional distress among mothers, as well as consideration for accessible interventions to improve the psychosocial functioning among these families.


Subject(s)
Mothers/psychology , Muscular Dystrophies/psychology , Psychological Distress , Quality of Life/psychology , Adult , Female , Humans , Male , Middle Aged , Prospective Studies
13.
JAMA Neurol ; 77(9): 1122-1131, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32539076

ABSTRACT

Importance: Micro-dystrophin gene transfer shows promise for treating patients with Duchenne muscular dystrophy (DMD) using recombinant adeno-associated virus serotype rh74 (rAAVrh74) and codon-optimized human micro-dystrophin driven by a skeletal and cardiac muscle-specific promoter with enhanced cardiac expression (MHCK7). Objective: To identify the 1-year safety and tolerability of intravenous rAAVrh74.MHCK7.micro-dystrophin in patients with DMD. Design, Setting, and Participants: This open-label, phase 1/2a nonrandomized controlled trial was conducted at the Nationwide Children's Hospital in Columbus, Ohio. It began on November 2, 2017, with a planned duration of follow-up of 3 years, ending in March 2021. The first 4 patients who met eligibility criteria were enrolled, consisting of ambulatory male children with DMD without preexisting AAVrh74 antibodies and a stable corticosteroid dose (≥12 weeks). Interventions: A single dose of 2.0 × 1014 vg/kg rAAVrh74.MHCK7.micro-dystrophin was infused through a peripheral limb vein. Daily prednisolone, 1 mg/kg, started 1 day before gene delivery (30-day taper after infusion). Main Outcomes and Measures: Safety was the primary outcome. Secondary outcomes included micro-dystrophin expression by Western blot and immunohistochemistry. Functional outcomes measured by North Star Ambulatory Assessment (NSAA) and serum creatine kinase were exploratory outcomes. Results: Four patients were included (mean [SD] age at enrollment, 4.8 [1.0] years). All adverse events (n = 53) were considered mild (33 [62%]) or moderate (20 [38%]), and no serious adverse events occurred. Eighteen adverse events were considered treatment related, the most common of which was vomiting (9 of 18 events [50%]). Three patients had transiently elevated γ-glutamyltransferase, which resolved with corticosteroids. At 12 weeks, immunohistochemistry of gastrocnemius muscle biopsy specimens revealed robust transgene expression in all patients, with a mean of 81.2% of muscle fibers expressing micro-dystrophin with a mean intensity of 96% at the sarcolemma. Western blot showed a mean expression of 74.3% without fat or fibrosis adjustment and 95.8% with adjustment. All patients had confirmed vector transduction and showed functional improvement of NSAA scores and reduced creatine kinase levels (posttreatment vs baseline) that were maintained for 1 year. Conclusions and Relevance: This trial showed rAAVrh74.MHCK7.micro-dystrophin to be well tolerated and have minimal adverse events; the safe delivery of micro-dystrophin transgene; the robust expression and correct localization of micro-dystrophin protein; and improvements in creatine kinase levels and NSAA scores. These findings suggest that rAAVrh74.MHCK7.micro-dystrophin can provide functional improvement that is greater than that observed under standard of care. Trial Registration: ClinicalTrials.gov Identifier: NCT03375164.


Subject(s)
Dystrophin , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/therapy , Outcome Assessment, Health Care , Child , Child, Preschool , Dependovirus , Dystrophin/genetics , Follow-Up Studies , Gene Transfer Techniques , Genetic Therapy/adverse effects , Genetic Vectors , Humans , Male , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Pilot Projects
14.
Int J Cardiol ; 316: 257-265, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32473283

ABSTRACT

BACKGROUND: Varied detection methods have resulted in conflicting reports on the prevalence of cardiac disease in Duchenne and Becker muscular dystrophy carriers (MDC). METHODS: We performed a prospective cohort study of 77 genetically-confirmed MDC mothers, 22 non-carrier mothers, and 25 controls. All participants underwent Cardiopulmonary Exercise Testing (CPET) and Cardiac Magnetic Resonance imaging (CMR). RESULTS: 25% of carriers had ventricular ectopy in recovery of exercise (RecVE) as compared to 1 non-carrier and no controls (p = .003). No difference in age or maximal oxygen consumption was noted. 11 carriers had abnormal (<55%) left ventricular ejection fraction by CMR. Evidence of late gadolinium enhancement (LGE) was noted in 48% of MDC, 1 non-carrier patient and no control subjects (p < .0001). Subset analysis of LGE+ and LGE- subjects revealed differences in age (44.1 v 38.6 yrs.; p = .005), presence of RecVE, (38.9% v 10.5%, p = .004), and high serum creatine kinase (CK) (> 289 U/l; 52.8% v 31.6%, p = .065). CONCLUSION: We describe the prevalence of disease using CPET and CMR in genetically-proven MDC. 49% of carriers had fibrosis, opposed to 5% of non-carriers, highlighting the importance of genetic testing in this population. Despite cardiomyopathy, functional assessment by treadmill was normal, illustrating the discrepancy in cardiac and skeletal muscle impacts. Age, RecVE and serum CK appear to have an important role in predicting cardiomyopathy. Serum CK levels suggest that a systemic higher global disease severity and not tissue heterogeneity may be the etiology for greater cardiac disease and relatively spared skeletal muscle disease in this population. Clinical Trial Registration https://clinicaltrials.gov/ct2/show/NCT02972580?term=mendell&cond=Duchenne+Muscular+Dystrophy&rank=5; ClinicalTrials.gov Identifier: NCT02972580.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Adult , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/epidemiology , Cardiomyopathies/genetics , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/epidemiology , Muscular Dystrophy, Duchenne/genetics , Prospective Studies , Stroke Volume , Ventricular Function, Left
15.
Antibiotics (Basel) ; 8(4)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554212

ABSTRACT

Gram-negative bacteria shield themselves from antibiotics by producing an outer membrane (OM) that forms a formidable permeability barrier. Multidrug resistance among these organisms is a particularly acute problem that is exacerbated by the OM. The poor penetrance of many available antibiotics prevents their clinical use, and efforts to discover novel classes of antibiotics against Gram-negative bacteria have been unsuccessful for almost 50 years. Recent insights into how the OM is built offer new hope. Several essential multiprotein molecular machines (Bam, Lpt, and Lol) work in concert to assemble the barrier and offer a swathe of new targets for novel therapeutic development. Murepavadin has been at the vanguard of these efforts, but its recently reported phase III clinical trial toxicity has tempered the anticipation of imminent new clinical options. Nonetheless, the many concerted efforts aimed at breaking down the OM barrier provide a source of ongoing optimism for what may soon come through the development pipeline. We will review the current state of drug development against the OM assembly targets, highlighting insightful new discovery approaches and strategies.

16.
Pediatr Neurol ; 98: 39-45, 2019 09.
Article in English | MEDLINE | ID: mdl-31277975

ABSTRACT

BACKGROUND: This study characterizes motor function responses after early dosing of AVXS-101 (onasemnogene abeparvovec) in gene replacement therapy in infants with severe spinal muscular atrophy type 1 (SMA1). METHODS: This study is a follow-up analysis of 12 infants with SMA1 who received the proposed therapeutic dose of AVXS-101 in a Phase 1 open-label study (NCT02122952). Infants were grouped according to age at dosing and baseline Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders scores: (1) early dosing/low motor, dosed age less than three months with scores <20 (n = 3), (2) late dosing, dosed at age three months or greater (n = 6), and (3) early dosing/high motor, dosed age less than three months with scores ≥20 (n = 3). RESULTS: Early dosing/low motor group demonstrated a mean gain of 35.0 points from a mean baseline of 15.7, whereas the late dosing group had a mean gain of 23.3 from a mean baseline of 26.5. The early dosing/high motor group quickly reached a mean score of 60.3, near the scale maximum (64), from a mean baseline of 44.0. Despite a lower baseline motor score, the early dosing/low motor group achieved sitting unassisted earlier than the late dosing group (mean age: 17.0 vs 22.0 months). The early dosing/high motor group reached this milestone earliest (mean age: 9.4 months). CONCLUSIONS: The rapid, significant motor improvements among infants with severe SMA1 treated with AVXS-101 at an early age highlight the importance of newborn screening and early treatment and demonstrate the therapeutic potential of AVXS-101 regardless of baseline motor function.


Subject(s)
Genetic Therapy , Motor Disorders/therapy , Outcome Assessment, Health Care , SMN Complex Proteins/therapeutic use , Spinal Muscular Atrophies of Childhood/therapy , Age Factors , Dependovirus , Female , Follow-Up Studies , Genetic Vectors , Humans , Infant , Male , Motor Disorders/etiology , Severity of Illness Index , Spinal Muscular Atrophies of Childhood/complications
17.
mBio ; 10(3)2019 05 28.
Article in English | MEDLINE | ID: mdl-31138744

ABSTRACT

Gram-negative bacteria produce lipid-anchored lipoproteins that are trafficked to their outer membrane (OM). These lipoproteins are essential components in each of the molecular machines that build the OM, including the Bam machine that assembles ß-barrel proteins and the Lpt pathway that transports lipopolysaccharide. Stress responses are known to monitor Bam and Lpt function, yet no stress system has been found that oversees the fundamental process of lipoprotein trafficking. We used genetic and chemical biology approaches to induce several different lipoprotein trafficking stresses in Escherichia coli Our results identified the Cpx two-component system as a stress response for monitoring trafficking. Cpx is activated by trafficking defects and is required to protect the cell against the consequence of the resulting stress. The OM-targeted lipoprotein NlpE acts as a sensor that allows Cpx to gauge trafficking efficiency. We reveal that NlpE signals to Cpx while it is transiting the inner membrane (IM) en route to the OM and that only a small highly conserved N-terminal domain is required for signaling. We propose that defective trafficking causes NlpE to accumulate in the IM, activating Cpx to mount a transcriptional response that protects cells. Furthermore, we reconcile this new role of NlpE in signaling trafficking defects with its previously proposed role in sensing copper (Cu) stress by demonstrating that Cu impairs acylation of lipoproteins and, consequently, their trafficking to the OM.IMPORTANCE The outer membrane built by Gram-negative bacteria such as Escherichia coli forms a barrier that prevents antibiotics from entering the cell, limiting clinical options at a time of prevalent antibiotic resistance. Stress responses ensure that barrier integrity is continuously maintained. We have identified the Cpx signal transduction system as a stress response that monitors the trafficking of lipid-anchored lipoproteins to the outer membrane. These lipoproteins are needed by every machine that builds the outer membrane. Cpx monitors just one lipoprotein, NlpE, to detect the efficiency of lipoprotein trafficking in the cell. NlpE and Cpx were previously shown to play a role in resistance to copper. We show that copper blocks lipoprotein trafficking, reconciling old and new observations. Copper is an important element in innate immunity against pathogens, and our findings suggest that NlpE and Cpx help E. coli survive the assault of copper on a key outer membrane assembly pathway.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipoproteins/metabolism , Signal Transduction , Stress, Physiological , Bacterial Outer Membrane Proteins/genetics , Copper/pharmacology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Lipoproteins/genetics , Protein Transport
18.
Hum Gene Ther ; 30(7): 794-801, 2019 07.
Article in English | MEDLINE | ID: mdl-30838895

ABSTRACT

In a previous limb-girdle muscular dystrophy type 2D (LGMD2D) clinical trial, robust alpha-sarcoglycan gene expression was confirmed following intramuscular gene (SGCA) transfer. This paved the way for first-in-human isolated limb infusion (ILI) gene transfer trial to the lower limbs. Delivery of scAAVrh74.tMCK.hSGCA via an intravascular route through the femoral artery predicted improved ambulation. This method was initially chosen to avoid safety concerns required for large systemic vascular delivery viral loads. ILI methods were adopted from the extensive chemotherapy experience for treatment of malignancies confined to the extremities. Six LGMD2D subjects were enrolled in a dose-ascending open-label clinical trial. Safety of the procedure was initially assessed in the single limb of a non-ambulant affected adult at a dose of 1 × 1012 vg/kg. Subsequently, ambulatory children (aged 8-13 years) were enrolled and dosed bilaterally with either 1 × 1012 vg/kg/limb or 3 × 1012 vg/kg/limb. The six-minute walk test (6MWT) served as the primary clinical outcome; secondary outcomes included muscle strength (maximum voluntary isometric force testing) and SGCA expression at 6 months. All ambulatory participants except one had pre- and post-treatment muscle biopsies. All four subjects biopsied had confirmed SGCA gene delivery by immunofluorescence, Western blot analysis (14-25% of normal), and vector genome copies (5.4 × 103-7.7 × 104 vg/µg). Muscle strength in the knee extensors (assessed by force generation in kilograms) showed improvement in two subjects that correlated with an increase in fiber diameter post gene delivery. Six-minute walk times decreased or remained the same. Vascular delivery of AAVrh74.tMCK.hSGCA was effective at producing SGCA protein at low doses that correlated with vector copies and local functional improvement restricted to targeted muscles. Future trials will focus on systemic administration to enable targeting of proximal muscles to maximize clinical benefit.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/therapy , Sarcoglycanopathies/genetics , Transgenes , Animals , Biomarkers , Child , Disease Models, Animal , Female , Gene Expression , Genetic Vectors/administration & dosage , Humans , Injections, Intramuscular , Male , Middle Aged , Muscular Dystrophies, Limb-Girdle/physiopathology , Transduction, Genetic , Treatment Outcome
19.
Pediatr Pulmonol ; 54(2): 179-185, 2019 02.
Article in English | MEDLINE | ID: mdl-30548438

ABSTRACT

BACKGROUND: Spinal Muscular Atrophy type 1 (SMA1) is a rare genetic neuromuscular disease where 75% of SMA1 patients die/require permanent-ventilation by 13.6 months. This study assessed the health outcomes of SMA1 infants treated with AVXS-101 gene replacement therapy. METHODS: Twelve genetically confirmed SMA1 infants with homozygous deletions of the SMN1 gene and two SMN2 gene copies received a one-time intravenous proposed therapeutic dose of AVXS-101 in an open label study conducted between December 2014 and 2017. Patients were followed for 2-years post-treatment for outcomes including (1) pulmonary interventions; (2) nutritional interventions; (3) swallow function; (4) hospitalization rates; and (5) motor function. RESULTS: All 12 patients completed the study. Seven infants did not require noninvasive ventilation (NIV) by study completion. Eleven patients had stable or improved swallow function, demonstrated by the ability to feed orally; 11 patients were able to speak. The mean proportion of time hospitalized was 4.4%; the mean unadjusted annualized hospitalization rate was 2.1 (range = 0, 7.6), with a mean length of stay/hospitalization of 6.7 (range = 3, 12.1) days. Eleven patients achieved full head control and sitting unassisted and two patients were walking independently. CONCLUSIONS: AVXS-101 treatment in SMA1 was associated with reduced pulmonary and nutritional support requirements, improved motor function, and decreased hospitalization rate over the follow-up period. This contrasts with the natural history of progressive respiratory failure and reduced survival. The reduced healthcare utilization could potentially alleviate patient and caregiver burden, suggesting an overall improved quality of life following gene replacement therapy. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT02122952.


Subject(s)
Genetic Therapy , Spinal Muscular Atrophies of Childhood/therapy , Child, Preschool , Humans , Infant , Infant, Newborn , Mutation , Spinal Muscular Atrophies of Childhood/genetics , Survival of Motor Neuron 1 Protein/genetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...