Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 948, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177593

ABSTRACT

The geochemical cycle of mercury in Earth's surface environment (atmosphere, hydrosphere, biosphere) has been extensively studied; however, the deep geological cycling of this element is less well known. Here we document distinct mass-independent mercury isotope fractionation (expressed as Δ199Hg) in island arc basalts and mid-ocean ridge basalts. Both rock groups show positive Δ199Hg values up to 0.34‰ and 0.22‰, respectively, which deviate from recent estimates of the primitive mantle (Δ199Hg: 0.00 ± 0.10‰, 2 SD)1. The positive Δ199Hg values indicate recycling of marine Hg into the asthenospheric mantle. Such a crustal Hg isotope signature was not observed in our samples of ocean island basalts and continental flood basalts, but has recently been identified in canonical end-member samples of the deep mantle1, therefore demonstrating that recycling of mercury can affect both the upper and lower mantle. Our study reveals large-scale translithospheric Hg recycling via plate tectonics.

2.
Sci Rep ; 9(1): 15056, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31636318

ABSTRACT

Earth's atmosphere experienced a step of profound oxygenation during the Neoproterozoic era, accompanied by diversification of animals. However, during the Cryogenian period (720-635 million years ago) Earth experienced its most severe glaciations which likely impacted marine ecosystems and multicellular life in the oceans. In particular, large volumes of Mn and Fe accumulated during the interglacial intervals of the Cryogenian glaciations, indicating large anoxic marine metal reservoirs. Here we present chromium isotope-, rare earth element-, and redox-sensitive trace element data of sedimentary rocks from the interglacial Datangpo Formation deposited between the Sturtian and Marinoan glaciations in South China, in an attempt to investigate the oxidation state of the oceans and atmosphere. Both the Cr isotope and trace element data indicate mainly anoxic water conditions with cryptic oxic surface water incursions after the Sturtian glaciation. Glacial-fed manganese precipitated as manganese carbonate in anoxic basins, and the non-fractionated δ53Cr record of -0.10 ± 0.06‰ identifies anoxic conditions with a cryptic component of slightly fractionated Cr isotope composition in manganese ore, in line with distinctly fractionated Mo isotope composition. Both the manganese carbonate ore and the black shales exhibit very low redox-sensitive element concentrations. Our study demonstrates that the oxygenation of the seawater, and inferably of the atmosphere, at the beginning of the Cryogenian interglacial interval was much subdued. The post-glacial rebound then allowed the Ediacaran biological diversity.

3.
Sci Rep ; 9(1): 4570, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30872681

ABSTRACT

Molybdenum (Mo) and its isotopes have been used to retrieve palaeoenvironmental information on the ocean-atmosphere system through geological time. Their application has so far been restricted to rocks least affected by severe metamorphism and deformation, which may erase or alter palaeoenvironmental signals. Environmental Mo-isotope signatures can be retrieved if the more manganese (Mn)-enriched rocks are isotopically depleted and the maximum range of δ98Mo values is close to the ~2.7‰ Mo-isotope fractionation known from Mo sorption onto Mn oxides at low temperature. Here, we show that the Morro da Mina Mn-ore deposit in Minas Gerais, Brazil, contains Mn-silicate-carbonate ore and associated graphitic schist that likely preserve δ98Mo of Palaeoproterozoic seawater, despite a metamorphic overprint of at least 600 °C. The extent of Mo-isotope fractionation between the Mn-silicate-carbonate ore and the graphitic schist is similar to modern Mn-oxide precipitates and seawater. Differences in δ98Mo signals are broadly reflected in cerium (Ce) anomalies, which suggest an oxic-anoxic-stratified Palaeoproterozoic ocean.

4.
Nature ; 453(7196): 767-9, 2008 Jun 05.
Article in English | MEDLINE | ID: mdl-18509331

ABSTRACT

Animal-like multicellular fossils appeared towards the end of the Precambrian, followed by a rapid increase in the abundance and diversity of fossils during the Early Cambrian period, an event also known as the 'Cambrian explosion'. Changes in the environmental conditions at the Precambrian/Cambrian transition (about 542 Myr ago) have been suggested as a possible explanation for this event, but are still a matter of debate. Here we report molybdenum isotope signatures of black shales from two stratigraphically correlated sample sets with a depositional age of around 542 Myr. We find a transient molybdenum isotope signal immediately after the Precambrian/Cambrian transition. Using a box model of the oceanic molybdenum cycle, we find that intense upwelling of hydrogen sulphide-rich deep ocean water best explains the observed Early Cambrian molybdenum isotope signal. Our findings suggest that the Early Cambrian animal radiation may have been triggered by a major change in ocean circulation, terminating a long period during which the Proterozoic ocean was stratified, with sulphidic deep water.


Subject(s)
Hydrogen Sulfide/metabolism , Seawater/chemistry , Animals , Biodiversity , Fossils , Geologic Sediments/chemistry , History, Ancient , Isotopes , Molybdenum/analysis , Oceans and Seas
5.
Biotechnol Bioeng ; 81(5): 588-93, 2003 Mar 05.
Article in English | MEDLINE | ID: mdl-12514808

ABSTRACT

Uptake rates of macrominerals and trace elements were characterized in batch and continuous cultures of Spirulina platensis under photoautotropic conditions. The values of yield coefficients were determined using inductively coupled plasma emission spectroscopy (ICP-ES). Further simplifications of culture medium proved possible, mainly in the trace element solutions; concentrations of some elements were lowered and trace elements B, Mo, V, Cr, Ni, Co, W, and Ti were removed.


Subject(s)
Culture Media/pharmacology , Cyanobacteria/metabolism , Minerals/pharmacokinetics , Spectrum Analysis/methods , Trace Elements/pharmacokinetics , Bioreactors , Cells, Cultured , Cyanobacteria/drug effects , Cyanobacteria/growth & development , Metabolic Clearance Rate , Minerals/analysis , Photosynthesis/physiology , Quality Control , Sensitivity and Specificity , Species Specificity , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...